Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zensus in der Pflanzenwurzel

16.01.2014
Bakterielle Lebensgemeinschaften spiegeln Artzugehörigkeit und Standortvorlieben wider

Pflanzen unterhalten in ihren Wurzeln bakterielle Lebensgemeinschaften, die ihnen zu Diensten sind. Klaus Schläppi und Paul Schulze-Lefert vom Max-Planck Institut für Pflanzenzüchtungsforschung in Köln haben gezeigt, dass diese Lebensgemeinschaften erstaunlich stabil sind und im Kern aus wenigen Bakterienfamilien bestehen. Deren Zusammensetzung hängt von der Zugehörigkeit zu einer Pflanzenfamilie und den Standortvorlieben der Pflanzen ab.


Blattrosette und Wurzelsystem der Ackerschmalwand Arabidopsis thaliana.

© MPI f. Pflanzenzüchtungsforschung/ K. Schläppi


Grünes Licht für bakterielle Lebensgemeinschaften: Bakterien auf der Wurzel von Arabidopsis thaliana (grün). Die Kontur der Pflanzenwurzel erscheint rot.

© MPI f. Pflanzenzüchtungsforschung/ K. Schläppi

Der Erdboden ist das artenreichste mikrobielle Ökosystem der Welt. Ein Teil dieser Bodenbakterien besiedeln auch die Pflanzenwurzeln. Deshalb stellt sich die Frage, ob das mikrobielle Leben in der Wurzel ein Spiegelbild der Bodenflora ist oder ob die Wirtspflanze die Zusammensetzung gezielt beeinflusst. Beherbergt eine Pflanzenfamilie also eine familientypische Auswahl an Bodenbakterien, die bei jedem Vertreter mehr oder weniger gleich ist - egal, wo er gerade Wurzeln geschlagen hat? Schläppi, Schulze-Lefert und ihre Kollegen sind dieser Frage nachgegangen und haben geprüft, wie ähnlich die bakteriellen Lebensgemeinschaften bei unterschiedlich nah verwandten Arten sind. Für diesen Zensus haben sie vier Arten von Kreuzblütengewächsen an zwei natürlichen Standorten und im Gewächshaus untersucht. Die Arten haben sich entwicklungsgeschichtlich vor acht bis 35 Millionen Jahren auseinanderentwickelt.

Bei den Pflanzen handelt es sich um Arabidopsis thaliana und ihre „jüngeren“ Schwesterarten Arabidopsis lyrata und Arabidopsis halleri sowie die „ältere“ Cardamine hirsuta. Arabidopsis thaliana, Arabidopsis lyrata und Cardamine hirsuta mögen keine Nahrungskonkurrenz und kommen an offenen und trockenen Standorten wie Steppen oder Berghängen vor. Arabidopsis halleri kommt auch mit Nahrungskonkurrenz gut zurecht und kann auf feuchten Wiesen leben.

„Wir haben bei unserem Zensus zwei wesentliche Beobachtungen gemacht“, sagt Schläppi zu den Ergebnissen. „Während die eine Hälfte der bakteriellen Gemeinschaft in der Wurzel ein Spiegelbild der von der Umwelt abhängigen Bodenflora ist, finden sich in der anderen Hälfte Bakterien, die davon unabhängig sind. Interessanterweise besteht dieser konservierte Kern aus einer taxonomisch begrenzten Gruppe mit Bakterien aus drei Familien.“ Allerdings gibt es Unterschiede bei der Anzahl der vorhandenen Bakterien. Einige der untersuchten Pflanzen beherbergen mehr von der einen Bakterienfamilie, andere mehr von der anderen Familie. „Das ist unsere zweite wichtige Beobachtung: Diese Unterschiede lassen sich nicht alleine durch die evolutionsgeschichtliche Distanz zwischen den untersuchten Pflanzenarten erklären.“

Die Unterschiede gehen nach Ansicht der Kölner Wissenschaftler auch auf die verschiedenen Standortvorlieben zurück. Arabidopsis thaliana und Arabidopsis lyrata bevorzugen ähnliche Standortortbedingungen, sie haben auch die ähnlichsten mikrobiellen Lebensgemeinschaften. Am engsten miteinander verwandt sind aber Arabidopsis lyrata und Arabidopsis halleri. „Die quantitativen Unterschiede bei den bakteriellen Lebensgemeinschaften haben sehr wahrscheinlich auch mit der arttypischen Anpassung an den Lebensraum zu tun“, erklärt Schläppi.

Ob die Kreuzblütengewächse die drei prominenten Bakterienfamilien gezielt in ihre Wurzel einladen und ihnen eine molekulare Eintrittskarte zuspielen oder ob sich die drei prominenten Bakterienfamilien einfach nur besser gegen ihre Konkurrenten im Boden durchsetzen können, lässt sich derzeit noch nicht beantworten. Schläppi und seine Kollegen vermuten, dass beide Prozesse eine Rolle spielen. Vor allem die Konkurrenz wird nicht zu unterschätzen sein, denn Pflanzen sind für alle Arten von Bakterien attraktiv. Die Gewächse scheiden nämlich einen Teil ihres bei der Fotosynthese hergestellten Zuckers durch die Wurzel in den Boden aus. „Natürlich wollen alle Bakterien an diese Zuckertöpfe“, sagt Schläppi. „Wir gehen davon aus, dass die Pflanzen von den wurzelassoziierten Bakterien wertvolle Dienste als Gegenleistung erhalten. Sonst würde die Symbiose nicht funktionieren.“

Welche Dienstleistungen das sein werden, wollen die Wissenschaftler als nächstes klären. Zwei sind offensichtlich: Die Bakterien helfen den Pflanzen an bestimmte Nährstoffe heranzukommen, wie etwa an lösliches Phosphat oder sie helfen ihnen, im Boden herumlungernde Krankheitserreger auf Distanz zu halten.

Ansprechpartner
Prof. Dr. Paul Schulze-Lefert
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
Telefon: +49 221 5062-350
Fax: +49 221 5062-353
E-Mail: schlef@mpipz.mpg.de
Dr. Klaus Schläppi
Telefon: +41 44 377-7292
E-Mail: klaus.schlaeppi@agroscope.admin.ch
Originalpublikation
Klaus Schlaeppi et al.
Quantitative divergence of bacterial root microbiota in Arabidopsis thaliana relatives.

PNAS, online vorab veröffentlicht, 30. Dezember 2013 (doi: 10.1073/pnas.1321597111)

Dr. Klaus Schläppi | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7723108/bakterien_pflanzenwurzel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit