Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Zellteilung bis zum Altern - Wissenschaftler identifizieren Generalschalter der Zelle

14.08.2009
Die Steuerung zellulärer Prozesse läuft häufig über nachträgliche Veränderungen bereits vorhandener Proteine.

Wissenschaftler des Max-Planck-Instituts für Biochemie und der Universität Kopenhagen konnten nun zeigen, dass das reversible Anhängen von Acetylgruppen (Essigsäureresten) praktisch alle Lebensbereiche der menschlichen Zelle beeinflusst und eine viel größere Bedeutung hat als bisher vermutet.

Ob Zellteilung, Signalübertragung oder Alterungsprozesse - überall spielen Acetylgruppen als molekulare Schalter eine Rolle. Dies macht die beteiligten Moleküle auch zu einem wichtigen Ziel für die Entwicklung neuer Medikamente gegen Erkrankungen wie Krebs, Alzheimer und Parkinson.

Proteine werden gesteuert, indem kleine Schaltermoleküle an sie andocken und dadurch bestimmte Funktionen an- oder abschalten. Im Fall der Acetylierung wird eine Acetylgruppe an das Protein angehängt, die durch bestimmte Enzyme - sogenannte Deacetylasen - wieder entfernt werden kann. Dieser Prozess spielt für zahlreiche zelluläre Abläufe eine Schlüsselrolle, wie die Wissenschaftler in der heutigen Ausgabe des renommierten Fachblatts "Science" berichten.

Dank einer eigens entwickelten innovativen Technologie konnten die Wissenschaftler zum ersten Mal im gesamten Proteinbestand der Zelle nach Schaltstellen suchen, an denen Acetylgruppen andocken können. Insgesamt entdeckten die Forscher mehr als 3600 Schaltstellen in fast 1800 Proteinen, damit ist die Acetylierung viel weiter verbreitet als bisher vermutet wurde. "Wir konnten die Zahl der bekannten Acetylierungsstellen um den Faktor sechs erhöhen und erstmals eine umfassende Einsicht in diese Art der Protein-Modifikation gewinnen", erklärt Professor Matthias Mann, der die Forschungsabteilung "Proteomics und Signaltransduktion" am Max-Planck-Institut für Biochemie leitet.

Früher gingen Wissenschaftler davon aus, dass die Acetylierung von Proteinen vor allem für die Genregulation im Zellkern eine Rolle spielt. Die neuen Ergebnisse zeigen, dass praktisch jeder zelluläre Prozess davon betroffen ist, z.B. Zellteilung, DNA-Reparatur oder die Übertragung von Signalen - ohne Acetylierung könnte die Zelle nicht funktionieren.

Wie essentiell Acetylierung sein kann, zeigt das Beispiel Cdc28: Dieses Enzym ist notwendig, damit Hefezellen sich teilen können. Funktioniert der Acetyl-Schalter nicht, wird das Enzym komplett abgeschaltet - die Hefezelle stirbt.

Defekte in der Protein-Regulation tragen zur Entstehung zahlreicher Krankheiten bei, daher ist die Acetylierung ein viel versprechender Ansatzpunkt für die Entwicklung neuer Medikamente. Besonders in der Krebstherapie gibt es hierzu schon erfolgreiche Ansätze, die darauf beruhen, dass Deacetylasen gehemmt werden. Zwei derartige Wirkstoffe werden bereits für die Therapie bestimmter Formen der Leukämie eingesetzt.

"Ein anderer Prozess, der wesentlich durch die Acetylierung mitbestimmt wird, ist das Altern", erzählt der Erstautor der Studie Chunaram Choudhary, der jetzt Professor am Novo Nordisk Center für Proteinforschung der Universität Kopenhagen ist. Die Beeinflussung dieses molekularen Schalters ist daher auch für die Behandlung altersbedingter neurodegenerativer Erkrankungen wie Alzheimer oder Parkinson sehr interessant.

Trotz ihrer großen biologischen und klinischen Bedeutung war die Acetylierung in der lebenden Zelle bisher nur schlecht verstanden. Mit Hilfe ihrer neuen Methodik können die Wissenschaftler nun erstmals umfassend untersuchen, wie die Acetyl-Schalter auf Wirkstoffe reagieren - vor allem auch für Medikamentenentwicklung verspricht dies einen erheblichen Fortschritt.

Originalveröffentlichung:
C. Choudhary, C. Kumar, F. Gnad, M.L. Nielsen, M. Rehmann, T. Walther, J.V. Olsen, M.Mann: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 14. August 2009.
Kontakt:
Prof. Matthias Mann
Proteomics und Signaltransduktion
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Dr. Monika Gödde
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
An Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-2824
Tel. ++49/89-8578-3882
E-mail:
konschak@biochem.mpg.de
goedde@biochem.mpg.de

Dr. Monika Gödde | idw
Weitere Informationen:
http://www.biochem.mpg.de/mann

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen
27.03.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Zirkuläre RNA wird in Proteine übersetzt
27.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie