Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zellmembranen Lipide austauschen

12.11.2012
Bayreuther Zellbiologen veröffentlichen in „Science“ neue Erkenntnisse zur Phospholipid-Synthese in Mitochondrien

„Kraftwerke der Zelle“, so werden die Mitochondrien oft genannt. Es handelt sich dabei um winzige Zellorganellen mit einem Durchmesser von weniger als einem Mikrometer, die in fast allen Zellen von Menschen, Tieren, Pflanzen und Pilzen enthalten sind.

Sie liefern die Energie, die für die Zellen lebenswichtig ist. Neuerdings ist die Biomedizin auf Indizien gestoßen, die darauf hinweisen, dass Fehlfunktionen der Mitochondrien an manchen Alterserscheinungen und neurodegenerativen Erkrankungen, wie etwa Parkinson, ursächlich beteiligt sind. Bevor aber gesicherte Schlussfolgerungen für die Bekämpfung dieser Krankheiten gezogen werden können, bedarf es weiterer Grundlagenforschung zur Entstehung dieser Zellorganellen. Bisher war beispielsweise unbekannt, wie Zellorganellen wichtige Bausteine ihrer Membranen, die Phosopholipide, untereinander austauschen.

Neue Forschungsergebnisse, die zur Aufklärung dieser Prozesse beitragen, präsentiert jetzt ein Forscherteam unter Beteiligung von Prof. Dr. Benedikt Westermann und Till Klecker an der Universität Bayreuth im Wissenschaftsmagazin „Science“.

Zusammen mit Wissenschaftlern der Universität Köln haben die Bayreuther Zellbiologen untersucht, wie es den Mitochondrien gelingt, Phospholipide herzustellen. Ohne diese fettähnlichen Moleküle könnten die Mitochondrien und auch andere Zellorganellen wesentliche Aufgaben in der Zelle nicht erfüllen.

Im „Huckepack-Verfahren“:

Das Protein Ups1 ermöglicht Importe aus dem Endoplasmatischen Retikulum Jedes Mitochondrion besitzt eine Hülle, die ihm eine längliche Form verleiht und sich aus einer äußeren und einer inneren Membran zusammensetzt. Für das Wachstum dieser Membranen müssen die Phospholipide zwischen den Membranen ausgetauscht und dann weiter umgebaut werden. Dabei gilt: Nicht alle Bausteine, die für die Synthese benötigt werden, können die Mitochondrien aus eigener Kraft herstellen. Sie müssen Vorstufen der Phospholipide aus einem anderen Zellorganell importieren, nämlich aus dem Endoplasmatischen Retikulum (ER). Das ER steht mit den Mitochondrien in einem sehr engen Kontakt. Es war bisher aber unbekannt, wie die Membranbestandteile zwischen dem ER und den mitochondrialen Membranen ausgetauscht werden.

Das Team aus Bayreuther und Kölner Forschern hat herausgefunden, wie Vorstufen der Phospholipide aus dem ER über die äußere bis zur inneren Membran der Mitochondrien gelangen. Sie haben ein Protein identifiziert, das ein als Phosphatidylsäure bezeichnetes Lipid gleichsam im Huckepack-Verfahren transportiert. Dieses Protein, „Ups1“, transportiert die Phosphatidylsäure, die die mitochondriale Außenmembran vom ER aufgenommen hat, weiter bis zur inneren Membran. Wie ein Shuttle wechselt Ups1 zwischen den beiden Membranen der Mitochondrien hin und her.

Der Syntheseprozess:
Enzymatische Störungen und ihre Folgen
Dieser Shuttle liefert den aus dem ER importierten Baustein bei der inneren Membran ab, wo er dann zu weiteren Phospholipiden umgebaut wird. Diese Synthese setzt sich dabei wie eine Kaskade aus mehreren, aufeinander folgenden Teilprozessen zusammen. Jeder Teilprozess wird dabei durch ein spezifisches Enzym in Gang gesetzt. Die Zellbiologen in Bayreuth und Köln haben neue Einsichten in diese Abläufe gewinnen können, indem sie einige der beteiligten Enzyme „ausgeschaltet“, also funktionsuntüchtig gemacht haben. Dadurch geriet der gesamte Syntheseprozess mehrfach ins Stocken – mit der Folge, dass sich an der inneren Membran Zwischenprodukte anhäuften, die nicht mehr weiterverarbeitet werden konnten.

Welche gravierenden Konsequenzen solche künstlichen Eingriffe in die Synthese der Phospholipide haben, wurde im Bayreuther Labor für Elektronenmikroskopie sichtbar. Solange die Enzyme ungestört arbeiten und die Herstellung der Phospholipide vorantreiben, weist die innere Membran der Mitochondrien eine Vielzahl kleiner Einstülpungen aus. Diese sogenannten „Cristae“ vergrößern die Oberfläche der Membran. Sie bieten damit genügend Platz für biochemische Reaktionen, die für die Funktionstüchtigkeit der Mitochondrien und die Energieversorgung der Zelle unentbehrlich sind. Doch wenn die Synthese der Phospholipide gestört wird und Zwischenprodukte nicht mehr weiterverarbeitet werden, ändert sich die Struktur der inneren Membran schlagartig. Die Membran verliert ihre ursprüngliche Form, die optimal der Funktion angepasst ist; zahlreiche Einstülpungen verlängern sich und lösen sich dann ab, weil sich die Lipidzusammensetzung der Membran dramatisch ändert.

Zellbiologische Grundlagenforschung

Diese Strukturänderungen geben erste Antworten auf bisher ungelöste Fragen der zellbiologischen Grundlagenforschung: Was bestimmt die Form der zellulären Membranen, und wie wird die Form der Funktion angepasst? „Es freut uns, wenn wir mit unserem elektronenmikroskopischen Know-How dazu beitragen können, grundlegende Fragen der Zellbiologie zu beantworten“, erklärt Prof. Dr. Benedikt Westermann. „Besonders spannend wird es sein, zukünftig zu sehen, ob diese Prozesse auch beim Altern oder neurodegenerativen Erkrankungen im Menschen eine Rolle spielen.“

Veröffentlichung:
Melanie Connerth, Takashi Tatsuta, Mathias Haag, Till Klecker, Benedikt Westermann, and Thomas Langer,
Intramitochondrial Transport of Phosphatidic Acid in Yeast by a Lipid Transfer Protein,
in: Science 2012, Vol. 338 no. 6108 pp. 815-818
DOI (Link): 10.1126/science.1225625
Ansprechpartner:
Prof. Dr. Benedikt Westermann
Zellbiologie und Elektronenmikroskopie
Universität Bayreuth
D-954470 Bayreuth
Tel.: +49 (0)921 55 4300
E-Mail: benedikt.westermann@uni-bayreuth.de
Text und Redaktion:
Christian Wißler M.A. mit Prof. Dr. Benedikt Westermann
Stabsstelle Presse, Marketing und Kommunikation Universität Bayreuth
D-95440 Bayreuth
Tel.: 0921 / 55-5356 / Fax: 0921 / 55-5325
E-Mail: mediendienst-forschung@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics