Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen wehren Viren ab

14.10.2016

Neue Wege zur körpereigenen Virenbekämpfung entdeckte jetzt eine internationale Forschergruppe unter Beteiligung von Prof. Dr. Jörg F. Schlaak und Dr. Martin Trippler aus der Klinik für Gastroenterologie und Hepatologie Hepatologie (Direktor: Prof. Dr. Guido Gerken) der Medizinischen Fakultät der Universität Duisburg-Essen (UDE) am Universitätsklinikum Essen.

Die Wissenschaftler entdeckten einen Mechanismus, mit dem das Hepatitis-C-Virus (HCV) menschliche Zellen umprogrammiert, um sich im Körper einzunisten. Dr. Martin Trippler: „Diese Erkenntnis ist wegweisend, denn so wissen wir nun, wie genau das verhindert werden kann.“ Der Bericht dazu wurde gerade in der renommierten Fachzeitschrift Nature Chemical Biology veröffentlicht.


Neue Wege zur körpereigenen Virenbekämpfung

UDE/UK Essen

Virusinfektionen gehören zu den größten medizinischen Herausforderungen – seien es Hepatitis-C-Viren, die West-Nil-, Zika- oder auch Ebola-Viren. Diesen Parasiten fehlen selbst grundlegende Stoffwechselwege, um sich selbständig vermehren zu können. Um sich im Körper ausbreiten zu können, kapern sie die metabolische Maschinerie ihres infizierten Wirtes. Wie dies genau abläuft, ist bis heute noch nicht in allen Details geklärt.

Aber jetzt ist man einen entscheidenden Schritt weiter: Der internationalen Forschergruppe unter Leitung von Prof. Yaakov Nahmias (Jerusalem) gelang es nämlich, eine Reihe genetischer Schalter zu identifizieren, die die metabolische Antwort auf eine Infektion mit dem Hepatitis-C-Virus kontrollieren. Sie konnten zeigen, wie die Gene Prozesse wie den Glukose- und Fettstoffwechsel kontrollieren und den Lebenszyklus des Hepatitis-C-Virus beeinflussen.

Während einige Stoffwechselprozesse im Versuch förderlich für die Viren waren, indem sie zum Beispiel seine Vermehrung beschleunigten, waren andere überraschenderweise antiviral, indem sie seinen Lebenszyklus unterbrachen. Sprich: Zellen können die Vermehrung von Viren blockieren, indem sie den Zugriff auf entscheidende Bausteine verweigern.

Diese Erkenntnis eröffnet neue Therapieoptionen bei Virusinfektionen. „Man sollte sich die Genregulation der metabolischen Prozesse zunutze machen, auf die die Viren angewiesen sind“, so Dr. Martin Trippler. Um herauszufinden, über welche Mechanismen die HCV-Viren in die Stoffwechselregulation eingreifen, verwendete die Forschergruppe ein neues von Prof. Nahmias entwickeltes Labormodell mit menschlichen Leberzellen.

Durch die Kartographierung des Stoffwechsels sowohl von HCV-infizierten als auch von normalen Leberzellen ließ sich der Akzent auf gestörte metabolische Prozesse setzen. Es zeigte sich, dass nukleäre Rezeptoren maßgeblich für diese Deregulierung verantwortlich sind. Nukleäre Rezeptoren sind Proteine, die innerhalb von Zellen durch Metabolite wie Fettsäuren oder Glukose aktiviert werden.

In der Folge erlauben sie es den Zellen, auf Wechsel des Nährstoffangebotes (z.B. nach einer Mahlzeit) zu reagieren. Viren wie das Hepatitis-C-Virus können in diesen Prozess eingreifen und so zum Beispiel Fettlebererkrankung und Diabetes auslösen. Im Versuch wurden die nukleären Rezeptoren infizierter Leberzellen mittels spezifischer Arzneimittel blockiert.

Während die Blockade des Glukose-Metabolismus schädlich für das HCV war, bewirkte die Blockade des Fettstoffwechsels das Gegenteil und erhöhte sogar die HCV-Vermehrungsrate. Diese Ergebnisse bestätigten sich auch bereits in einer kleinen Gruppe von HCV-Patienten. Auf dieser Basis kann nun an auch neuen Medikamenten für HCV-Infizierte geforscht werden.

Weitere Informationen: Christine Harrell, Tel. 0201/723-1615, christine.harrell@uni-due.de

Weitere Informationen:

http://DOI: 10.1038/nCHeMBIO.2193

Beate Kostka | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-duisburg-essen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften