Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zell-Entwicklung auf Knopfdruck

07.05.2012
Forscher wollen schaltbare Polymerbürsten für die Stammzellforschung entwickeln

Oberflächen, die auf Kommando ihre Eigenschaften ändern – das klingt zunächst nach einer netten Spielerei. Doch ein amerikanisch-deutsches Forscherteam mit Beteiligung des Leibniz-Instituts für Analytische Wissenschaften (ISAS) hat große Pläne für die so genannten „schaltbaren Polymerbürsten“:


Schematische Darstellung einer Polymerbürste. Oben: Nur die Molekülketten der abstoßenden Polymerart sind ausgestreckt, die Partikel bleiben auf Abstand. Unten: Die Umgebungsbedingungen wurden verändert, die Molekülketten der anziehenden Polymerart strecken sich und die Partikel können an ihr haften bleiben.

Grafik: ISAS, alle Rechte frei

Sie wollen smarte Oberflächen entwickeln, die eines Tages in der Stammzellforschung eingesetzt werden können, um Zellen zu stimulieren und ihre Entwicklung zu kontrollieren. Dazu haben die Wissenschaftler ein Projekt bei der Deutschen Forschungsgemeinschaft (DFG) eingeworben, das Anfang Mai gestartet ist. Am 4. Mai traf sich das Konsortium zu einem Kick-off-Meeting.

Die schaltbaren Bürsten bestehen aus langkettigen Molekülen – so genannten Polymeren –, die auf einer Oberfläche befestigt sind und wie die Borsten einer Bürste nebeneinander stehen. Je nach Art des Polymers können sie verschiedene Stoffe binden oder abstoßen, und sie können ihre Eigenschaften verändern, wenn sich die Umgebungsbedingungen verändern. So gibt es zum Beispiel pH-empfindliche Polymere, die in saurer Umgebung eine wasserabweisende Form annehmen und bei steigendem pH-Wert auf „wasserliebend“ umschalten. Diese einfachen Polymerbürsten wurden bereits vor einigen Jahren entwickelt und seither intensiv untersucht. „Mit ihnen kann man zum Beispiel Proteine binden und auf Kommando wieder von der Oberfläche lösen. Denkbare Anwendungen dafür wären etwa einfache Biosensoren“, meint Dr. Karsten Hinrichs vom ISAS, der für die optische Analyse der Polymerbürsten zuständig ist.
Doch das Potenzial, das in der Entwicklung steckt, ist mit solchen Anwendungen noch lange nicht ausgeschöpft. Das Wissenschaftlerteam (neben dem ISAS sind beteiligt: die Clarkson University in Potsdam, New York, die Clemson University in Clemson, South Carolina, die University of California in Davis, Kalifornien, die TU Dresden, die Universität Göttingen sowie das Leibniz-Institut für Polymerforschung in Dresden) will komplexe Bürsten entwickeln, die zwischen mehr als nur zwei Zuständen umschalten können. Dank einer Mischung aus verschiedenen Polymeren, die gezielt bestimmte Moleküle anbieten können, sollen Oberflächen entstehen, die die einzelnen Stufen der Stammzellentwicklung unterstützen und stimulieren. Die Polymere könnten im richtigen Moment die Substanzen an der Oberfläche präsentieren, die für den nächsten Entwicklungsschritt der Zellen benötigt werden. „Das würde es uns auch erlauben, die zeitlichen Effekte von Wachstumsfaktoren auf die Stammzell-Differenzierung zu untersuchen“, erklären die Forscher.

Ein erster Schritt in Richtung komplexer Polymerbürsten ist bereits gemacht: Die Wissenschaftler haben eine so genannte binäre Bürste mit zwei verschiedenen Polymertypen entwickelt, die nicht einfach nur von wasserliebend auf wasserabweisend umschaltet, sondern dabei graduell reguliert werden kann. So können sie kontrollieren, wie stark Moleküle an der Bürste haften.

In den kommenden Jahren will das Team nun mit verschiedenen Polymermaterialien experimentieren, die auf unterschiedliche Stimuli reagieren, um die Bürsten umzuschalten: etwa mit Temperatur, Magnetfeld oder elektrischen Signalen. Außerdem soll mit den unterschiedlichen Polymeren getestet werden, wie man die benötigten Wachstumsfaktoren am besten binden und an der Oberfläche exponieren kann. Ergänzt werden diese Experimente durch kinetische Studien und theoretische Modelle. Die beteiligten Arbeitsgruppen bilden ein interdisziplinäres Netzwerk: Während das Leibniz-Institut für Polymerforschung (IPF), die Clemson University und die Clarkson University die verschiedenen Bürstensysteme entwickeln und die Universität Göttingen die theoretischen Modelle erstellt, übernimmt das ISAS die Analyse der Oberflächen mit Hilfe von Eigenentwicklungen im Bereich der Infrarotspektroskopie und -ellipsometrie, mit denen die Bürsten in wässriger Umgebung untersucht werden können.

Anfang Mai haben die Arbeiten im Rahmen des Projekts „Switchable Polymer Interfaces for Bottom-up Stimulation of Mammalian Cells“ begonnen. Das Projekt wird drei Jahre lang gefördert und vom IPF in Dresden koordiniert.

Hintergrundinfos:

Bereits veröffentlichte Forschungsergebnisse zu den Polymerbürsten sind zu finden in:

Hoy, O.; Zdyrko, B.; Lupitsky, R.; Sheparovych, R.; Aulich, D.; Wang, J.; Bittrich, E.; Eichhorn, K.; Uhlmann, P.; Hinrichs, K.; Müller, M.; Stamm, M.; Minko, S.; Luzinov, I.: Synthetic Hydrophilic Materials with Tunable Strength and a Range of Hydrophobic Interactions (Advanced Functional Materials 2010, 20, 2240-2247)

Hinrichs, K.; Aulich, D.; Ionov, L., Esser N., Eichhorn K.-J., Motornov, M.; Stamm, M. and Minko S.: Chemical and Structural Changes in pH-Responsive Mixed Polyelectrolyte Brush Studied by Infrared Ellipsometry (Langmuir 2009, 25,1445-1452)

Aulich, D.; Hoy, O.; Luzinov, I.; Brücher, M.; Hergenröder, R.; Bittrich, E.; Eichhorn, K.-J.; Uhlmann, P.; Stamm, M.; Esser, N.; Hinrichs, K.: In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments (Langmuir 26 (2010) 12926-12932)

ISAS und IPF sind Mitglieder der Leibniz-Gemeinschaft, zu der zurzeit 87 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung sowie zwei assoziierte Mitglieder gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten strategisch und themenorientiert an Fragestellungen von gesamtgesellschaftlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen etwa 16.800 Mitarbeiterinnen und Mitarbeiter, davon sind ca. 7.800 Wissenschaftler, davon wiederum 3.300 Nachwuchswissenschaftler.

Tinka Wolf | Leibniz-Institut
Weitere Informationen:
http://www.leibniz-gemeinschaft.de
http://www.isas.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie