Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zell-Entwicklung auf Knopfdruck

07.05.2012
Forscher wollen schaltbare Polymerbürsten für die Stammzellforschung entwickeln

Oberflächen, die auf Kommando ihre Eigenschaften ändern – das klingt zunächst nach einer netten Spielerei. Doch ein amerikanisch-deutsches Forscherteam mit Beteiligung des Leibniz-Instituts für Analytische Wissenschaften (ISAS) hat große Pläne für die so genannten „schaltbaren Polymerbürsten“:


Schematische Darstellung einer Polymerbürste. Oben: Nur die Molekülketten der abstoßenden Polymerart sind ausgestreckt, die Partikel bleiben auf Abstand. Unten: Die Umgebungsbedingungen wurden verändert, die Molekülketten der anziehenden Polymerart strecken sich und die Partikel können an ihr haften bleiben.

Grafik: ISAS, alle Rechte frei

Sie wollen smarte Oberflächen entwickeln, die eines Tages in der Stammzellforschung eingesetzt werden können, um Zellen zu stimulieren und ihre Entwicklung zu kontrollieren. Dazu haben die Wissenschaftler ein Projekt bei der Deutschen Forschungsgemeinschaft (DFG) eingeworben, das Anfang Mai gestartet ist. Am 4. Mai traf sich das Konsortium zu einem Kick-off-Meeting.

Die schaltbaren Bürsten bestehen aus langkettigen Molekülen – so genannten Polymeren –, die auf einer Oberfläche befestigt sind und wie die Borsten einer Bürste nebeneinander stehen. Je nach Art des Polymers können sie verschiedene Stoffe binden oder abstoßen, und sie können ihre Eigenschaften verändern, wenn sich die Umgebungsbedingungen verändern. So gibt es zum Beispiel pH-empfindliche Polymere, die in saurer Umgebung eine wasserabweisende Form annehmen und bei steigendem pH-Wert auf „wasserliebend“ umschalten. Diese einfachen Polymerbürsten wurden bereits vor einigen Jahren entwickelt und seither intensiv untersucht. „Mit ihnen kann man zum Beispiel Proteine binden und auf Kommando wieder von der Oberfläche lösen. Denkbare Anwendungen dafür wären etwa einfache Biosensoren“, meint Dr. Karsten Hinrichs vom ISAS, der für die optische Analyse der Polymerbürsten zuständig ist.
Doch das Potenzial, das in der Entwicklung steckt, ist mit solchen Anwendungen noch lange nicht ausgeschöpft. Das Wissenschaftlerteam (neben dem ISAS sind beteiligt: die Clarkson University in Potsdam, New York, die Clemson University in Clemson, South Carolina, die University of California in Davis, Kalifornien, die TU Dresden, die Universität Göttingen sowie das Leibniz-Institut für Polymerforschung in Dresden) will komplexe Bürsten entwickeln, die zwischen mehr als nur zwei Zuständen umschalten können. Dank einer Mischung aus verschiedenen Polymeren, die gezielt bestimmte Moleküle anbieten können, sollen Oberflächen entstehen, die die einzelnen Stufen der Stammzellentwicklung unterstützen und stimulieren. Die Polymere könnten im richtigen Moment die Substanzen an der Oberfläche präsentieren, die für den nächsten Entwicklungsschritt der Zellen benötigt werden. „Das würde es uns auch erlauben, die zeitlichen Effekte von Wachstumsfaktoren auf die Stammzell-Differenzierung zu untersuchen“, erklären die Forscher.

Ein erster Schritt in Richtung komplexer Polymerbürsten ist bereits gemacht: Die Wissenschaftler haben eine so genannte binäre Bürste mit zwei verschiedenen Polymertypen entwickelt, die nicht einfach nur von wasserliebend auf wasserabweisend umschaltet, sondern dabei graduell reguliert werden kann. So können sie kontrollieren, wie stark Moleküle an der Bürste haften.

In den kommenden Jahren will das Team nun mit verschiedenen Polymermaterialien experimentieren, die auf unterschiedliche Stimuli reagieren, um die Bürsten umzuschalten: etwa mit Temperatur, Magnetfeld oder elektrischen Signalen. Außerdem soll mit den unterschiedlichen Polymeren getestet werden, wie man die benötigten Wachstumsfaktoren am besten binden und an der Oberfläche exponieren kann. Ergänzt werden diese Experimente durch kinetische Studien und theoretische Modelle. Die beteiligten Arbeitsgruppen bilden ein interdisziplinäres Netzwerk: Während das Leibniz-Institut für Polymerforschung (IPF), die Clemson University und die Clarkson University die verschiedenen Bürstensysteme entwickeln und die Universität Göttingen die theoretischen Modelle erstellt, übernimmt das ISAS die Analyse der Oberflächen mit Hilfe von Eigenentwicklungen im Bereich der Infrarotspektroskopie und -ellipsometrie, mit denen die Bürsten in wässriger Umgebung untersucht werden können.

Anfang Mai haben die Arbeiten im Rahmen des Projekts „Switchable Polymer Interfaces for Bottom-up Stimulation of Mammalian Cells“ begonnen. Das Projekt wird drei Jahre lang gefördert und vom IPF in Dresden koordiniert.

Hintergrundinfos:

Bereits veröffentlichte Forschungsergebnisse zu den Polymerbürsten sind zu finden in:

Hoy, O.; Zdyrko, B.; Lupitsky, R.; Sheparovych, R.; Aulich, D.; Wang, J.; Bittrich, E.; Eichhorn, K.; Uhlmann, P.; Hinrichs, K.; Müller, M.; Stamm, M.; Minko, S.; Luzinov, I.: Synthetic Hydrophilic Materials with Tunable Strength and a Range of Hydrophobic Interactions (Advanced Functional Materials 2010, 20, 2240-2247)

Hinrichs, K.; Aulich, D.; Ionov, L., Esser N., Eichhorn K.-J., Motornov, M.; Stamm, M. and Minko S.: Chemical and Structural Changes in pH-Responsive Mixed Polyelectrolyte Brush Studied by Infrared Ellipsometry (Langmuir 2009, 25,1445-1452)

Aulich, D.; Hoy, O.; Luzinov, I.; Brücher, M.; Hergenröder, R.; Bittrich, E.; Eichhorn, K.-J.; Uhlmann, P.; Stamm, M.; Esser, N.; Hinrichs, K.: In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments (Langmuir 26 (2010) 12926-12932)

ISAS und IPF sind Mitglieder der Leibniz-Gemeinschaft, zu der zurzeit 87 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung sowie zwei assoziierte Mitglieder gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten strategisch und themenorientiert an Fragestellungen von gesamtgesellschaftlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen etwa 16.800 Mitarbeiterinnen und Mitarbeiter, davon sind ca. 7.800 Wissenschaftler, davon wiederum 3.300 Nachwuchswissenschaftler.

Tinka Wolf | Leibniz-Institut
Weitere Informationen:
http://www.leibniz-gemeinschaft.de
http://www.isas.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics