Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirkstoffe aus Pflanzen: Arbeitsteilung im Bioreaktor

29.03.2016

Pflanzen produzieren zahlreiche Substanzen, die sich bei der Behandlung von Krebs, Alzheimer oder Parkinson einsetzen lassen. Doch häufig sind die Stoffwechselwege zur Zielsubstanz so komplex, dass ihre biotechnologische Herstellung wenig effektiv und kostenintensiv ist. In einem Forschungsprojekt kombinieren Wissenschaftler des KIT ihre Expertise mit dem technologischen Know-how der Phyton Biotech GmbH, dem größten Produzenten pharmazeutischer Inhaltsstoffe mit Pflanzenzellen.

Mithilfe eines mikrofluidischen Bioreaktors aus miteinander gekoppelten Modulen ahmen die Wissenschaftler komplexes Pflanzengewebe technisch nach, um Wirkstoffe gegen Krebs oder Alzheimer effektiver und günstiger zu gewinnen als bislang.


Am KIT entwickelt: Der mikrofluidische Bioreaktor ahmt Pflanzengewebe technisch nach. Im neuen Projekt machen die Forscher nun den nächsten Schritt

KIT

Nach neuesten Schätzungen bilden Pflanzen etwa eine Million chemische Stoffe, sogenannte Sekundärmetabolite, die nicht wie etwa Aminosäuren oder Zucker absolut lebensnotwendig sind. In diesem gewaltigen Pool aus pflanzlicher Produktion schlummert ein wahrer Schatz aus pharmazeutisch aktiven Substanzen, die zum Beispiel das Wachstum von Krebszellen hemmen oder die Bildung der für Alzheimer typischen Plaques im Gehirn verringern.

Viele dieser kostbaren Inhaltsstoffe können jedoch nicht synthetisch hergestellt werden. Häufig müssen sie deshalb direkt aus Wildpflanzen extrahiert und kostenintensiv aufgereinigt werden. Zudem sind viele dieser Pflanzen selten und bedroht:

Beispielsweise wurde die Pazifische Eibe durch die Entdeckung, dass Taxol® Krebszellen hemmt, an den Rand der Ausrottung gebracht. „Deshalb sind biotechnologische Ansätze zur Gewinnung entsprechender Wirkstoffe von großem Interesse“, sagt Peter Nick, Professor für Molekulare Zellbiologie am Botanischen Institut des KIT.

Häufig sind die zugrunde liegenden Stoffwechselwege sehr komplex: Die Substanz von Interesse ist in der natürlichen Pflanze meist das Produkt einer langen Kette von Zwischenschritten mit ebenso vielen immer wieder umgewandelten Zwischenprodukten. Die dafür nötigen chemischen Prozesse finden zudem auch nicht unbedingt in einer einzigen Pflanzenzelle statt, sondern können von der Wurzel bis zum Blatt über das gesamte Pflanzengewebe auf spezialisierte Zelltypen verteilt sein. Phyton konnte vor vielen Jahren zeigen, dass sich pflanzliche Arzneistoffe wie Taxol® auch ressourcenschonend und nachhaltig – durch Kultivierung von Pflanzenzellen im Labor – herstellen lassen.

„Für bestimmte Substanzen gilt jedoch, dass sie sich weder in einer einfachen Zellkultur noch in gentechnisch manipulierten Mikroorganismen abbilden lassen, weil die Stoffwechselwege zu komplex sind“, sagt Peter Nick. „In einem neuen Forschungsprojekt wollen wir deshalb ein Pflanzengewebe mit unterschiedlichen Zelltypen technisch nachbilden – mit einem sogenannten mikrofluidischen Bioreaktor.

Dieser besteht aus einer Reihe von Modulen, in denen je ein Zelltyp kultiviert wird. Die Module sollen über Kanäle miteinander verbunden sein. Ziel ist es, dass Stoffwechselprodukte eines Zelltyps in das nächste Modul gelangen und dort weiterverarbeitet werden, ohne dass sich die unterschiedlichen Zelltypen vermischen. Die Zielsubstanz könnte dann zum Beispiel aus dem Durchfluss extrahiert und somit ‚geerntet‘ werden.“

Das Projekt wird vom Projektträger Jülich (PtJ) betreut und vom Bundesministerium für Bildung und Forschung über zwei Jahre mit 750.000 Euro gefördert. Projektpartner sind das Botanische Institut, das Institut für Mikrostrukturtechnik (beide KIT) und das Unternehmen Phyton Biotech GmbH. Zusammen decken die drei Partner die für das Projekt nötige Expertise komplett ab.

Während das Botanische Institut seine Erfahrung in der molekularen Zellbiologie pflanzlicher Zellkulturen einbringt, ist das Institut für Mikrostrukturtechnik für die Entwicklung und Fertigung der Teilkomponenten der mikrofluidischen Bioreaktoren sowie deren Mikro-Montage und Verschaltung zu einem funktionsfähigen Gesamtsystem zuständig. Die Phyton Biotech GmbH als Industriepartner ist weltweit führend im Bereich Pflanzenzellfermentation und liefert die nötige Expertise und Infrastruktur, um die Anwendungsmöglichkeiten auf industriellem Maßstab auszuloten.

„Wir glauben, dass wir in dieser Kooperation mit den Experten des KIT die Nutzung von kontrolliert kultivierten Pflanzenzellen auf eine neue Ebene stellen können“, sagt Dr. Gilbert Gorr, Leiter für Forschung und Entwicklung bei Phyton. „Die Zugänglichkeit zu weiteren Naturstoffen zu ermöglichen, die bisher nur unter größten Schwierigkeiten und Kosten produziert werden können, ist unser gemeinsames Ziel“.

Phyton Biotech ist als Hersteller von qualitativ hochwertigen aktiven pharmazeutischen Inhaltsstoffen durch Pflanzenzellfermentation (PCF®)ein weltweiter Lieferant für Paclitaxel und Docetaxel. Das Unternehmen ist erfolgreich von Behörden wie EDQM, EMA, FDA, KFDA und TGA inspiziert worden. Neben der Produktion bietet Phyton auch Entwicklungsdienste für Kunden an. Diese umfassen die Entwicklung von pflanzlichen Zelllinien und Fermentationsprozessen für pflanzliche Inhaltsstoffe, aber auch die Entwicklung von Syntheseprozessen komplexer Substanzen.

Weiterer Kontakt:

Nils Ehrenberg, Pressereferent, Tel.: +49 721 608-48122, Fax: +49 721 608-43658, E-Mail: nils.ehrenberg@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten