Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Steroidhormone Pflanzen wachsen lassen

19.08.2014

Pflanzen können sich außergewöhnlich schnell an Veränderungen in ihrer Umgebung anpassen. Dabei helfen ihnen Botenstoffe, die unmittelbar nach Licht- und Temperaturreizen aktiv werden. Eine Schlüsselstellung nehmen hier pflanzliche Steroidhormone ein, die menschlichen Sexualhormonen ähneln.

In der aktuellen Ausgabe von Nature Communications beschreiben Wissenschaftlerinnen und Wissenschaftler einen neuen Wirkmechanismus für die Hormonklasse der Brassinosteroide.


Das Foto zeigt, wie wichtig Brassinosteroide für die Entwicklung von Pflanzen sind: Ein Mangel des Pflanzenhormons (rechts) führt zu Wachstumsstörungen, hier bei Gurkenpflanzen.

Wilfried Rozhon / TUM


Brassinosteroide sind Wachstumshormone, die in allen Pflanzen vorkommen. Erstmals wurden die Steroidhormone 1979 aus Raps (Brassica napus) isoliert - daher leitet sich auch ihr Name ab.

A. Heddergott / TUM

Pflanzen sind Mensch und Tier in einigem überlegen. Sie haben eine beeindruckende Regenerationsfähigkeit und können ganze Organe neu bilden, zum Beispiel eine Baumkrone nach einem Blitzeinschlag.

Einen entscheidenden Nachteil haben Pflanzen allerdings: Sie sind sprichwörtlich in ihrem Lebensraum verwurzelt und daher ungünstigen Umweltbedingungen schutzlos ausgeliefert. Aus diesem Grund haben sie Mechanismen entwickelt, mit denen sie ihr Wachstum und ihre Entwicklung schnell an Veränderungen anpassen können.

Diese Flexibilität wird vor allem durch Pflanzenhormone gewährleistet. Brassinosteroide spielen dabei eine zentrale Rolle. Sie wirken in kleinsten Konzentrationen, regulieren Zellstreckung und Zellteilung und sind über die gesamte Lebensspanne der Pflanze hinweg aktiv. Einem Team von Forschern der Technischen Universität München (TUM) und der Universität Wien gelang es jetzt, einen neuen Wirkmechanismus aufzuklären.

Sammelstellen für DNA-bindendes Protein

Sobald Brassinosteroide an einen Rezeptor an der Zellwand binden, startet eine vielstufige Reaktionskaskade, an deren Ende die Aktivierung des Transkriptionsfaktors CESTA (CES) steht. Transkriptionsfaktoren binden an die DNA im Zellkern und aktivieren Gene, die die Proteinzusammensetzung der Zelle verändern.

Erstmals konnten die Wissenschaftler um Prof. Brigitte Poppenberger vom TUM-Fachbereich für Biotechnologie gartenbaulicher Kulturen zeigen, dass sich das CES-Protein nach Brassinosteroid-Aktivierung an bestimmten Stellen im Zellkern konzentriert. Diese Strukturen sind als so genannte ‚Nuclear Bodies’ im Zellkern zu erkennen.

Die Wissenschaftler vermuten, dass sich der Transkriptionsfaktor CES an bestimmten Regionen der DNA sammelt, um dort die Genfunktion effektiv zu steuern. „Die Zelle scheint wichtige Ressourcen zu bündeln, um die Produktion bestimmter Proteine schnell anzukurbeln - ähnlich wie auf einer Baustelle, auf der Arbeiter kurzfristig zusammenkommen, um zum Beispiel eine Materiallieferung zu entladen“, sagt Poppenberger.

Neuer Signalweg gefunden

Die Wissenschaftler entschlüsselten außerdem den Mechanismus, der den CES-Molekülen das Signal zum Sammeln gibt: Die Moleküle haben eine Bindungsstelle für das so genannte SUMO-Protein. Sobald dieses andockt, wandert CES in Nuclear Bodies und wird gleichzeitig vor dem Abbau durch Enzyme geschützt. „Interessanterweise scheint die SUMO-Markierung die CES-Wirkung zu verstärken“, so Poppenberger. „Im Gegensatz zur Tierwelt: Bei Tieren dient das SUMO-Protein dazu, Transkriptionsfaktoren zu hemmen.“

Die Forschungsergebnisse sind ein wichtiger Schritt, um die Wirkungsweise von Brassinosteroiden besser zu verstehen, wie Poppenberger erläutert: „Im Gartenbau und in der Landwirtschaft werden andere Arten von wachstumsfördernden Hormonen seit mehreren Jahrzehnten erfolgreich eingesetzt, um Erträge zu erhöhen. Das Potenzial der Brassinosteroide ist bisher noch nicht erschlossen. Ein besseres Verständnis ihrer Wirkungsweise wird helfen, sie für die Pflanzenproduktion nutzbar zu machen. Das ist das Ziel unserer Arbeit.“

Publikation:
Interplay between phosphorylation and SUMOylation events determines CESTA protein fate in brassinosteroid signaling; Mamoona Khan, Wilfried Rozhon, Simon Josef Unterholzner, Tingting Chen, Marina Eremina, Bernhard Wurzinger, Andreas Bachmair, Markus Teige, Tobias Sieberer, Erika Isono, and Brigitte Poppenberger, Nature Communications; DOI: 10.1038/ncomms5687

Kontakt:
Prof. Dr. Brigitte Poppenberger
Technische Universität München
Fachgebiet Biotechnologie gartenbaulicher Kulturen
Tel.: +49 8161 71-2401
brigitte.poppenberger@tum.de
http://bgk.wzw.tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31745/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie