Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich die Tomate den pflanzlichen Parasiten Teufelszwirn vom Stängel hält

29.07.2016

Tübinger Forscher entdecken den Mechanismus der Erkennung des Schmarotzers als Grundlage der natürlichen Resistenz

Weltweit gibt es mehr als 4.500 Pflanzenarten, die parasitisch von und auf anderen Pflanzen leben. Im Nutzpflanzenanbau richten einige dieser Arten großen Schaden an, bis hin zum vollständigen Ernteverlust. Wissenschaftlerinnen und Wissenschaftler aus der Arbeitsgruppe von Dr. Markus Albert vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen haben in Kooperation mit Professor Cyril Zipfel und Matthew Smoker vom Sainsbury Laboratory im englischen Norwich nun untersucht, wie einige Pflanzenarten durch eine natürliche Resistenz pflanzliche Parasiten abwehren können.


Bei der Buntnessel gelingt dem Teufelszwirn die Infektion. Mit seinen Saugorganen, den Haustorien, entzieht er der Wirtspflanze Nährstoffe, Wasser und Kohlenhydrate.

Foto: Ursula Fürst/ZMBP, Universität Tübingen

Ihre Forschungsobjekte sind Kultursorten der Tomate, bei denen der Parasit Teufelszwirn vergeblich seine Saugorgane zu den Leitgeweben ausstreckt. Die Forscher entdeckten ein Gen bei der Tomate, das ihr die Erkennung des Teufelszwirns ermöglicht und einen Mechanismus der angeborenen Immunität in Gang setzt.

Dieser war bisher nur aus der Abwehr der Pflanze gegen mikrobielle Krankheitserreger, Insekten oder Spinnentiere bekannt. Die Ergebnisse geben neue Hinweise, wie Nutzpflanzen besser gegen pflanzliche Parasiten geschützt werden können. Die Studie erscheint in der Fachzeitschrift Science.

Als Teufelszwirn oder Seide werden Pflanzen der Gattung Cuscuta bezeichnet, die alle parasitisch auf anderen Pflanzen leben. Ohne Blätter und Wurzeln winden sie sich um die Sprosse meist krautiger, zweikeimblättriger Pflanzen und infizieren diese, indem sie mit speziellen Saugorganen, den Haustorien, einen Kontakt zu deren Leitgeweben herstellen.

Über diese Verbindung entziehen die Parasiten dem Wirt Nährstoffe, Wasser und auch Kohlenhydrate. Die stark geschwächte Pflanze stirbt meist ab, ohne Samen und Früchte auszubilden. Als eine der wenigen resistenten Arten lässt die Tomate (Solanum lycopersicum) die Cuscuta-Haustorien nicht in ihren Spross einwachsen, indem sie ein korkig-holziges Schutzgewebe bildet. In diesem Fall stirbt der Teufelszwirn ab, weil er nicht an die notwendigen Nährstoffe kommt.

Dem Forscherteam gelang es mithilfe von Kreuzungen der Kulturtomate und einer wilden Tomatenart (Solanum pennellii), ein für die Resistenz gegen den Teufelszwirn mitverantwortliches Gen zu entdecken und zu isolieren. „Im Erbgut der Tomate kodiert es für einen Rezeptor, der auf der Oberfläche der Tomatenzellen sitzt“, erklärt Markus Albert. „Er erkennt ein molekulares Muster des Teufelszwirns.“

Habe der Rezeptor das Signal von der Ankunft des Parasiten erhalten, funktioniere er als molekularer Schalter, der bestimmte Immunantworten der Tomate auslöse. Das führe zu einer gesteigerten Resistenz der unfreiwilligen Wirtspflanze. „Die Tomatenpflanze erkennt Pflanzenparasiten in ganz ähnlicher Weise, wie sie auch eindringende Bakterien wahrnehmen kann“, sagt der Wissenschaftler.

Dies sei überraschend, weil sich Parasit und Wirt als Pflanzen aus Sicht der Evolution sehr nahe stehen – „zumindest im Vergleich mit den Modellen Pflanze und Mikrobe oder Pflanze und Insekt“, sagt Albert. Bisher seien ein Mechanismus, mit dem Pflanzen andere Pflanzen als fremd erkennen, beziehungsweise molekulare Muster, die eine parasitische Pflanze als fremd kennzeichnen, unbekannt gewesen.

Durch die neuen Ergebnisse habe man nun in der Grundlagenforschung bessere Ansatzpunkte, den Dialog zwischen Pflanzen auf zellulärer Ebene zu verstehen. „Außerdem stehen durch diese Entdeckung Pflanzenforschern neue Möglichkeiten zur Verfügung, Nutzpflanzen zu kreieren, die für parasitische Pflanzen weniger anfällig sind.“

Publikation:
Volker Hegenauer, Ursula Fürst, Bettina Kaiser, Matthew Smoker, Cyril Zipfel, Georg Felix, Mark Stahl und Markus Albert: Detection of the Plant Parasite Cuscuta reflexa by a Tomato Cell Surface Receptor. Science, 29. Juli 2016. Doi: 10.1126/science.aaf3919

Kontakt:
Dr. Markus Albert
Universität Tübingen
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Telefon +49 7071 29-76669
Mobil: +49 176 25252196
markus.albert[at]uni-tuebingen.de

Antje Karbe | Eberhard Karls Universität Tübingen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie