Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schmilzt Eis? Wasserschicht für Wasserschicht!

13.12.2016

Max-Planck-Wissenschaftler haben kontroverse Diskussion über das Schmelzverhalten von Eis gelöst – es schmilzt schichtweise!

Spätestens in der Schule lernen wir, dass Wasser bei 0°C zu Eis gefriert bzw. Eis zu Wasser schmilzt. Schon vor über 150 Jahren fand aber der bekannte Physiker Michael Faraday heraus, dass auch unterhalb des Gefrierpunktes auf Eis noch eine dünne Wasserschicht existiert. Diese Schicht ist unter anderem essentiell für das Gleitverhalten beim Skifahren und die Bewegung der Gletscher.


Eis schmilzt schichtweise.

© MPIP

Die Existenz dieser wasserähnlichen Schicht wird seit Langem von Wissenschaftlern untersucht und kontrovers diskutiert: Bei welcher Temperatur wird die äußere Schicht flüssig? Wie hängt die Dicke der Flüssigkeitsschicht von der Temperatur ab? Und wie ändert sich die Dicke? Kontinuierlich? In Stufen?

Bisherige Versuche zeigten meist ein kontinuierliches Anwachsen der Schichtdicke. Nahe des Schmelzpunkts wurden Flüssigkeitsschichten mit bis zu 45 nm (1 nm = 10-9 m) Dicke beobachtet. Das entspricht einem Tausendstel Durchmesser eines Menschenhaares und ist mit bloßem Auge nicht wahrnehmbar.

Wissenschaftlern vom Max-Planck-Institut für Polymerforschung (MPI-P), in Zusammenarbeit mit Forschern aus den USA, den Niederlanden und Japan, ist es nun gelungen, die Eigenschaften dieser quasi-flüssigen Schicht auf molekularer Ebene mittels fortgeschrittener oberflächen-spezifischer Spektroskopie zu untersuchen und per Computersimulation zu erläutern. Ihre Ergebnisse werden in der neuen Ausgabe der wissenschaftlichen Zeitschrift Proceedings of the National Academy of Science (PNAS) veröffentlicht.

Das Team von Wissenschaftlern um Ellen Backus, Forschungsgruppenleiterin am MPI-P, ging der Frage nach, wie sich die dünne Schmelzschicht auf Eis bildet, wie sie anwächst und ob sie sich von normalem Wasser unterscheidet.

Um den gesamten Prozess zu verstehen, steckten die Mainzer Forscher viel Energie und Ehrgeiz in das Herstellen identischer, rund 10 cm großer, perfekter, defektfreier Eiskristalle. Die orientierten Kristalle wurden so geschnitten, dass die Forscher genau wussten, wie die Wassermoleküle an der Oberfläche angeordnet sind.

Wassermoleküle in der Flüssigkeit haben eine schwächere Wechselwirkung mit einander als im Eiskristall. Mittels eines speziellen Spektroskopieverfahrens und dem gezieltem Auftauen des Eiswürfels konnte die Veränderung der Wechselwirkung direkt an der Grenzfläche zwischen Eis und Luft untersucht werden.

Die Ergebnisse zeigten, dass die erste molekulare Eisschicht schon bei -38°C (235 K ) geschmolzen ist, der Starttemperatur der Untersuchungen. Wird die Temperatur auf -16°C (257 K) erhöht, geht auch die zweite molekulare Schicht in eine Flüssigkeit über. Das Aufschmelzen erfolgt demzufolge nicht kontinuierlich, sondern in einzelnen Lagen. Wissenschaftler aus Mainz, den USA und Japan bestätigen diese Experimente durch Computerberechnungen.

„Eine weitere wichtige Frage war für uns, ob sich die entstandene Flüssigkeit bei diesen tiefen Temperaturen von normalem Wasser unterscheidet“ sagt Mischa Bonn, Co-Autor der Veröffentlichung und Direktor am MPI-P. Und in der Tat entspricht die flüssigkeitsähnliche Schicht bei -4°C (269 K ) nicht der von unterkühltem Wasser, sondern eher der von Eis. Das zeigt sich darin, dass sie stärkere Wasserstoffbindungen aufweist als normales Wasser.

Diese Resultate sind nicht nur bedeutend für das Verständnis vom Schmelzverhalten von Eis, sondern hilft auch Klimaforschern bei der Erklärung katalytischer Reaktionen auf Eiskristallen und Wassertröpfchen in der Atmosphäre.


Max-Planck-Institut für Polymerforschung
Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf weiche Materie und makromolekulare Materialien ist das MPI-P mit seiner Forschungsausrichtung weltweit einzigartig. Seine Aufgabe ist es, neue Polymere herzustellen und zu charakterisieren. Zum Aufgabengebiet gehört auch die Untersuchung ihrer physikalischen und chemischen Eigenschaften. Das MPI-P wurde 1984 gegründet. Es beschäftigt mehr als 500 Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland, von denen die große Mehrzahl mit Forschungsaufgaben befasst ist.
Weitere Informationen finden Sie unter: www.mpip-mainz.mpg.de

Publikation in „Proceedings of the National Academy of Science (PNAS)

„Experimental and theoretical evidence for bilayer-by- bilayer surface melting of crystalline ice“
M. A. Sánchez, T. Kling, T. Ishiyama, M.-J. van Zadel, P. J. Bisson, M. Mezger, M. N. Jochum, J. D. Cyran, W. J. Smit, H. J. Bakker, M. J. Shultz, A. Morita,
D. Donadio, Y. Nagata, M. Bonn, and E. H. G. Backus
doi:10.1073/pnas.1612893114

Wissenschaftlicher Kontakt:
Dr. Ellen Backus
Max-Planck-Institut für Polymerforschung
Ackermannweg 10
55128 Mainz
T+49-6131-379536
backus@mpip-mainz.mpg.de

Verena Hochrein | Max-Planck-Institut für Polymerforschung
Weitere Informationen:
http://www.mpip-mainz.mpg.de/2907/en

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie