Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie pathogene Darmbakterien die Magensäure überleben

07.09.2016

Krankheitserregende Darmbakterien aktivieren Schutzmechanismen, um im sauren Milieu des Magens zu überleben. Forscher des Nationalen Forschungsschwerpunktes (NFS) «TransCure» der Universität Bern haben nun die Struktur des zentralen Proteins eines bakteriellen Säure-Resistenz-Systems entschlüsseln können. Dadurch werden wichtige Einblicke in die «Überlebenstricks» von Darmbakterien gewonnen.

Durch die Nahrung aufgenommene krankheitserregende Darmbakterien werden den extrem sauren Bedingungen des Magens ausgesetzt. Um dieses unwirtliche Milieu zu überleben und anschliessend in den menschlichen Darm zu gelangen, aktivieren Bakterien verschiedene Überlebensmechanismen.


3D-Modell des Proteins «AdiC» aus dem Bakterium Escherichia coli mit orange und gelb gefärbten Komponenten. Das Molekül Agmatin (in magenta) wird von AdiC durch die Zellmembran (grau) geschleust.

© Dimitrios Fotiadis, UniBE

Das am besten charakterisierte bakterielle Säure-Resistenz-System stammt vom Darmbakterium Escherichia coli (E. coli). Bestimmte Stämme von E. coli sind häufig Verursacher von menschlichen Darmerkrankungen. Für das Überleben von E. coli im Magen spielt ein bestimmtes Protein eine bedeutende Rolle. Wie es aber auf molekularer Ebene die Darmbakterien vor der Magensäure schützt, war bislang nicht klar.

Nun ist es Hüseyin Ilgü und Jean-Marc Jeckelmann aus der Gruppe von Prof. Dimitrios Fotiadis vom Institut für Biochemie und Molekulare Medizin der Universität Bern und dem NFS «TransCure» gelungen, die Struktur dieses Proteins zu entschlüsseln und offene Fragen zu seiner Funktionsweise zu beantworten. Die Studie wurde im Journal «Proceedings of the National Academy of Sciences (PNAS)» publiziert.

Transportprotein zentral für das Überleben

Werden E. coli-Zellen sauren Bedingungen – das heisst tiefen pH Werten – ausgesetzt, können Protonen über die Zellwände eindringen und das Zellinnere ansäuern – dies führt zum Absterben der Zellen. Um dies zu vermeiden, aktivieren Bakterien Mechanismen, die ein Überleben bei tiefem pH-Wert sicherstellen. Säure-Resistenz-Systeme sorgen dafür, dass im Zellinneren eine pH-Untergrenze nicht unterschritten wird, um das Überleben des Bakteriums zu ermöglichen.

So werden bei der Umwandlung der Aminosäure L-Arginin in das Molekül Agmatin Protonen gebunden und somit aus dem bakteriellen Zellinneren entfernt. Die Abnahme der Protonenkonzentration in der Zelle hat die Erhöhung und Stabilisierung des pH-Wertes im Zellinneren zur Folge. Um frisches L-Arginin ein- und Agmatin auszuschleusen, verwendet E. coli das Transportprotein AdiC. Transportproteine befinden sich in den Wänden von Zellen und agieren als «Türsteher», indem sie nur bestimmte Moleküle hinein- und herauslassen.

Vom Verständnis der Funktion zum Arzneistoff

Der molekulare Transportmechanismus von AdiC ist unklar, ebenso wie die Erkennung und Bindung der Substrate L-Arginin und Agmatin durch den Transporter. Um dies klären zu können, hat die Gruppe um Dimitrios Fotiadis Kristalle von AdiC-Transportern gezüchtet und diese für die Entschlüsselung der atomaren Struktur mittels Röntgenkristallographie verwendet. Dank des äusserst präzisen atomaren Modells von AdiC in An- und Abwesenheit von gebundenem Agmatin konnten nun zum ersten Mal wichtige offene Fragen zur molekularen Erkennung und Bindung von L-Arginin und Agmatin an das Protein beantwortet werden.

Die Proteinstuktur dient zudem als guter Ausgangspunkt für das Verständnis des Transportmechanismus von L-Arginin und Agmatin durch die Membran. «Die gewonnenen strukturellen und funktionellen Erkenntnisse von AdiC sind auch für die Entwicklung von Arzneistoffen innerhalb des Berner NFS «TransCure» wertvoll» sagt Fotiadis. So wird nun die Struktur von AdiC bei der Suche nach Hemmern von menschlichen Transportern eingesetzt, welche mit AdiC verwandt sind und in bestimmten Krebszellen überexprimiert werden.

Angaben zur Publikation:

Hüseyin Ilgü, Jean-Marc Jeckelmann, Vytautas Gapsys, Zöhre Ucurum, Bert L. de Groot, Dimitrios Fotiadis: Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC, PNAS, 29. Juli 2016, doi: 10.1073/pnas.1605442113

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2016/medie...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie