Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Lösungsmittelmoleküle bei Reaktionen kooperieren

06.10.2016

Auf den ersten Blick scheinbar unbeteiligte Moleküle aus der Lösungsmittelumgebung können essenziell für chemische Reaktionen sein. Das haben Forscher anhand der Ether-Bildung in einem Lösungsmittelgemisch gezeigt. Sie klärten die zugrunde liegenden Mechanismen mit modernsten spektroskopischen und theoretischen Verfahren im Detail auf. Das Fazit: Auch solche Lösungsmittelmoleküle, die an der Reaktion nicht direkt teilnehmen, sind für den Reaktionsverlauf essenziell und können die Reaktionspartner maßgeblich beeinflussen. Die Forscher berichten in „Nature Communications“.

Auf den ersten Blick scheinbar unbeteiligte Moleküle aus der Lösungsmittelumgebung können essenziell für chemische Reaktionen sein. Das haben Forscher anhand der Ether-Bildung in einem Lösungsmittelgemisch gezeigt. Sie klärten die zugrunde liegenden Mechanismen mit modernsten spektroskopischen und theoretischen Verfahren im Detail auf. Das Fazit: Auch solche Lösungsmittelmoleküle, die an der Reaktion nicht direkt teilnehmen, sind für den Reaktionsverlauf essenziell und können die Reaktionspartner maßgeblich beeinflussen.


Welche Rolle Lösungsmittel bei chemischen Reaktionen spielen, erforscht das Team vom Exzellenzcluster Resolv.

© RUB, Marquard

Die Ergebnisse beschreibt ein Team von experimentell und theoretisch arbeitenden Chemikern der Ruhr-Universität Bochum, der Universität Würzburg und des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr in der Zeitschrift „Nature Communications“.

Licht schaltet Reaktionsfreude an

Aus einer reaktionsträgen chemischen Vorläuferverbindung kann durch einen Lichtblitz ein hochreaktives Molekül entstehen, das selbst mit umgebenden Lösungsmittelmolekülen reagiert. Das kann in weniger als einer Milliardstel Sekunde geschehen. Ein Beispiel ist das Molekül Diphenylcarben: Es reagiert schnell zu einem Ether, wenn es im Lösungsmittel Methanol vorliegt. Mit dem Lösungsmittel Acetonitril hingegen ist diese Reaktion nicht möglich.

Die Forscher um Dr. Elsa Sanchez-Garcia und Prof. Dr. Patrick Nürnberger untersuchten, was passiert, wenn Diphenylcarben in einem Lösungsmittelgemisch aus Methanol und Acetonitril vorliegt. Die Bildung des Ethers geht langsamer vonstatten als in reinem Methanol; auch die Ausbeute ist geringer. Warum zeigten die Forscher in der aktuellen Studie.

Zweites Lösungsmittelmolekül entscheidend

Eine potenzielle Erklärung wäre, dass Diphenylcarben in dem Lösungsmittelgemisch länger warten muss, bis ein Methanolmolekül in der Nähe ist, um mit ihm zu reagieren. „Die Reaktion läuft aber nicht so simpel, wie auf den ersten Blick angenommen“, sagt Patrick Nürnberger vom Bochumer Lehrstuhl für Physikalische Chemie II. „Es sind mehrere Mechanismen am Werk.“

Obwohl für die Bildung des finalen Ethermoleküls formal nur ein einziges Methanolmolekül benötigt wird, erfolgt die Reaktion erst dann, wenn ein zweites Methanolmolekül zugegen ist. Das ergab eine Kombination von ultraschnellen spektroskopischen Experimenten im Femtosekundenbereich und molekulardynamischen Computersimulationen.

Nicht nur unbeteiligte Zuschauer

Die Chemiker beschreiben im Detail die Reaktionsmechanismen für zwei Szenarien: In einem trifft Diphenylcarben zunächst auf ein einzelnes Methanolmolekül, und später kommt ein weiteres hinzu. Im zweiten Szenario trifft Diphenylcarben direkt auf einen Verbund von Methanolmolekülen.

In beiden Fällen zeigt sich, dass ein einzelnes Methanolmolekül für das Zustandekommen der Reaktion nicht ausreicht. „Die anderen Methanolmoleküle sind daher nicht nur unbeteiligte Zuschauer, sondern Gehilfen bei der Reaktion“, fasst Nürnberger zusammen. „Die Ergebnisse sind ein wichtiger Baustein, um die Wechselwirkung von reaktiven Substanzen mit der Lösungsmittelumgebung zu verstehen.“

Förderung

Die Forschungsarbeiten wurden unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC1069), des Sonderforschungsbereichs SFB 1093 und des Emmy-Noether-Programms. Weitere Förderung kam von der Boehringer-Ingelheim-Stiftung (Plus-3 Programm).

Originalveröffentlichung

Johannes Knorr, Pandian Sokkar, Sebastian Schott, Paolo Costa, Walter Thiel, Wolfram Sander, Elsa Sanchez-Garcia, Patrick Nuernberger: Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures, in: Nature Communications, 2016, DOI: 10.1038/ncomms12968

Pressekontakt

Prof. Dr. Patrick Nürnberger
Physikalische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 29946
E-Mail: patrick.nuernberger@rub.de


Exzellenzcluster Resolv
http://www.ruhr-uni-bochum.de/solvation/

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics