Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Giftstoffe zelluläre Wegweiser aktivieren

05.07.2016

Ein Durchfallerreger verändert die Oberfläche von Darmzellen so, dass sich Bakterien besser ansiedeln können

Die Einnahme von Antibiotika schädigt oft die natürliche Darmflora. Diese kann infolgedessen krankmachende Keime nicht mehr in Schach halten; Durchfall und Darmentzündungen können entstehen. Zu den Erregern gehört der Keim Clostridium difficile, der Darmzellen durch Giftstoffe angreift.


Bakterielle Giftstoffe bilden Zellausläufer und benutzen dabei Septine als Wegweiser.

Bild: Carsten Schwan

Das Bakterium bewirkt unter anderem, dass sich ein feines Netzwerk aus Zellausläufern auf der Oberfläche von Darmzellen bildet, wodurch sich weitere Bakterien besser ansiedeln können. Die Arbeitsgruppe um Prof. Dr. Dr. Klaus Aktories und Dr. Carsten Schwan vom Pharmakologischen Institut der Albert-Ludwigs-Universität Freiburg hat gezeigt, wie der Giftstoff CDT von C. difficile-Bakterien diese Zellausläufer bildet.

Die Wissenschaftlerinnen und Wissenschaftler haben ihre Forschungsergebnisse in der Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht. „Indem wir das CDT-Toxin untersuchen, können wir besser verstehen, wie Darmentzündungen durch die Krankheitserreger entstehen und sich entwickeln“, sagt Aktories. „Zudem können wir grundlegende physiologische Prozesse aufklären, indem wir das Toxin als Werkzeug nutzen.“

Besonders angriffslustige Bakterien der Spezies C. difficile stellen Gifte her, die das Zellgerüst von Darmzellen zerstören. Dadurch werden Kontakte zwischen Darmzellen und ihre Schrankenfunktionen gehemmt, was zu typischen Durchfällen und Entzündungen führt. Zwei wichtige Bestandteile des Zellgerüstes sind Aktin und Mikrotubuli, die eine zentrale Rolle bei der Erhaltung der Zellform, der Schrankenfunktion und bei zellulären Bewegungsvorgängen spielen.

Das CDT-Toxin von C. difficile verändert Aktin und blockiert dadurch dessen Kettenbildung, was seine normale Funktion stört. Eine Folge davon ist, dass sich Mikrotubuli-Ketten leichter bilden und derart vermehren, dass zahlreiche Zellausläufer entstehen. Diese bilden ein Netzwerk auf der Darmzell-Oberfläche und fördern den Kontakt der Bakterien mit der Wirtszelle.

Wie CDT diese Zellausläufer bildet, war bislang nicht bekannt. Die Freiburger Wissenschaftler haben gezeigt, dass der Einfluss des Giftstoffes auf das Zusammenspiel der beiden Gerüstproteine Aktin und Tubulin von einem dritten Baustein abhängt, den Septinen. In einer menschlichen Zelle gibt es bis zu 13 verschiedene Septine, die miteinander wechselwirken und sich zu Ketten, Ringen oder Bändern verbinden können. Dieser Prozess nennt sich Polymerisation.

CDT verändert das Aktin so, dass die Septine nicht mehr an Aktin binden können und stattdessen an die Zellmembran wandern. Hier bilden sie trichterartige Septinpolymere, die in die Mikrotubuli – röhrenförmige Proteinstrukturen – hineinwachsen. Septine stehen mit der Spitze von wachsenden Mikrotubuli in direkter Wechselwirkung und funktionieren so als ein Wegweiser für das Wachstum dieser Strukturen.

Die Untersuchungen der Freiburger Arbeitsgruppe ermöglichen darüber hinaus Einblicke in die Entstehung der Septin-Trichter. Die Proteine Cdc42 und Borg regulieren den Transport der Septine an die Membranen und sind eine Voraussetzung dafür, dass sich die Trichter bilden. Eine ähnliche Funktion wie bei der Ausläuferbildung, die das Toxin CDT bewirkt, haben Septine im Nervensystem des Menschen bei der Bildung von Nervenausläufern, den Neuriten. Auch hier kommt es zu einem Zusammenspiel von Aktin, Mikrotubuli und Septinen, wobei mikroskopisch ähnliche Strukturen gebildet werden. Die Untersuchung des Toxins gibt daher Aufschluss über grundlegende Abläufe im menschlichen Körper.

Klaus Aktories ist Direktor der Abteilung I am Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität sowie Mitglied des Freiburger Exzellenzclusters BIOSS Centre for Biological Signalling Studies. Carsten Schwan ist wissenschaftlicher Mitarbeiter in der Arbeitsgruppe von Aktories.

Originalpublikationen:
Thilo Nölke, Carsten Schwan, Friederike Lehmann, Kristine Østevold, Olivier C. Pertz, and Klaus Aktories (2016). Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase CDT. PNAS. DOI: 10.1073/pnas.1522717113

Artikel über die Forschung von Klaus Aktories im Freiburger Forschungsmagazin uni’wissen 01/2013
http://www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2013-1/#/36

Kontakt:
Prof. Dr. Dr. Klaus Aktories
Institut für Experimentelle und Klinische Pharmakologie und Toxikologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5301
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-07-05.101

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise