Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Eindringlinge dem Immunsystem entkommen

02.03.2017

Das Bakterium Salmonella enterica verursacht bei Menschen Magen-Darm-Erkrankungen und ist ein führender Auslöser von Lebensmittelvergiftungen. Dabei gelingt es dem Keim, das Immunsystem auszutricksen. Forscherinnen und Forscher am Exzellenzcluster für Alternsforschung CECAD haben unter Leitung von Nirmal Robinson einen Mechanismus entdeckt, wie das gelingt. Sie hoffen das Wissen im Kampf gegen Krebs einsetzen zu können. Die Ergebnisse wurden im Fachjournal PLoS Pathogens veröffentlicht.

Unser Immunsystem hat unterschiedliche Möglichkeiten, mit Bedrohungen von außen, wie zum Beispiel Bakterien, umzugehen. Einer dieser Verteidigungsmechanismen ist die sogenannte Autophagie. „Man kann sich Autophagie wie den Staubsauger der Zelle vorstellen“, sagt Nirmal Robinson, Hauptautor der neuen Veröffentlichung zum Thema.


Salmonelle versucht dem Immunsystem zu entkommen. Der weiße Pfeil zeigt auf eine unvollständige Doppelmembran um Salmonella Typhimurium. Foto: Nirmal Robinson

„Sie hält die Zelle sauber durch Abbauen und Entfernen von Krankheitserregern oder beschädigten Teilen der Zelle.“ Dadurch wird Anhäufung von zellulärem Abfall verhindert und die Funktion der Zellbestandteile bleibt erhalten. Ein Rückgang der Autophagie spielt auch eine wichtige Rolle im Alterungsprozess und bei der Langlebigkeit. Wenn mit Autophagie verknüpfte Gene aus Organismen wie dem Fadenwurm C. elegans entfernt werden, stirbt dieser deutlich früher.

Für seine aktuelle Forschung nutzte Robinson das Bakterium Salmonella typhimurium. Mit 13.823 gemeldeten Fällen in Deutschland im Jahr 2015 gehören Salmonellen zu den häufigen Infektionskrankheiten bei Menschen. Bei gesunden Menschen verschwinden die Symptome ohne antibiotische Behandlung, für Risikogruppen wie ältere Menschen oder Personen mit geschwächtem Immunsystem besteht die Gefahr ernsthafter gesundheitlicher Folgen.

Von diesem Organismus ist bekannt, dass er der Autophagie entkommt. Ziel der Forscher war es zu entschlüsseln, wie der Keim den Prozess erkennen und austricksen kann. Sie haben herausgefunden, dass zwei Eiweiße, die Änderungen im Stoffwechsel messen, bei der Infektion reduziert werden. Normalerweise wird ein Energieverlust in der Zelle von dem Eiweiß AMPK bemerkt – das ist der Auslöser von Autophagie. Sirtuine sind eine weitere Art von Stoffwechselsensoren und ihre Funktion hängt von dem Stoffwechselprodukt NAD+ ab.

Zusammen tragen sie dazu bei, dass die Autophagie ausgelöst wird. Bei Infektionen tritt ein Energieverlust auf, der normalerweise Autophagie auslöst. Für Robinsons Forschung wurden Immunzellen mit dem Erreger infiziert. Wie anzunehmen sank das Energielevel. Dann war zu erwarten, dass AMPK aktiviert würde – was auch geschah, aber nur für eine sehr kurze Zeit. Obwohl das Energielevel niedrig bleibt, wird die Aktivierung nicht erhalten. Weitere Untersuchungen des Prozesses enthüllten den Mechanismus. Bald nach der Infektion werden die für Auslösung der Autophagie benötigten Proteine in den Lysosomen (Zelleinheiten die Abbauenzyme enthalten) abgebaut. „Das Pathogen nimmt also die Maschinerie auseinander, indem es sie für den Abbau markiert – und so dem Immunsystem entkommt“, so der Forscher.

Nirmal Robinson hofft durch das verbesserte Verständnis des Prozesses der Autophagie Wege zu finden, wie man dies therapeutisch einsetzen kann. „Wir können lernen diesen Pfad zu nutzen.“ In Krebszellen zum Beispiel ist die Autophagie hochreguliert, damit sie schnell wachsen und Stress überstehen können. Die Forscher würden gerne in den Prozess eingreifen und das Level der Autophagie erhöhen und senken, gerade so, wie sie es brauchen. Seine Arbeit vergleicht Robinson mit einer alltäglichen Situation. „Krankheitserreger sind wie Einbrecher. Indem wir ihnen folgen, können wir sehen, wo wir Schwächen haben.“ Durch ein Verständnis der Interaktion zwischen Wirt und Eindringling, können wir mehr über unseres eigenes Selbst verstehen und wie unsere Verteidigungsmechanismen gegen Bedrohungen von außen aufgebaut sind.

Original Publikation:

Ganesan R, Hos NJ, Gutierrez S, Fischer J, Stepek JM, Daglidu E, Krönke M, Robinson M (2017) Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog 13(2): e1006227. doi:10.1371/journal.ppat.1006227

Kontakt:

Dr. Nirmal Robinson
Principal Investigator, CECAD Junior Group Leader (CECAD CRC Bridging Group)
Tel. +49 221 478 84083
nirmal.robinson[at]uk-koeln.de

Peter Kohl
Public Relations Officer
Tel. +49 221 478 84043
pkohl[at]uni-koeln.de

Gabriele Rutzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-koeln.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik