Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Eingangstore der Zellkraftwerke aufgebaut sind

28.09.2015

Ein internationales Forscherkonsortium hat die Architektur des TOM-Kanals in Mitochondrien bestimmt

Die molekulare Maschine TOM – kurz für „translocase of the outer membrane“ – bildet Kanäle durch die äußere Membran von Mitochondrien, den Kraftwerken der Zelle. Seit mehr als 30 Jahren versuchen Forschende herauszufinden, wie die einzelnen Proteine des TOM-Komplexes zusammengebaut sind.


Der TOM-Komplex bildet einen Kanal durch die äußere Membran der Mitochondrien und importiert Proteine vom Cytosol, der Zellflüssigkeit, in die Zellkraftwerke. Grafik: Nils Wiedemann

Dieses Rätsel ist nun gelöst: Ein internationales Forschungsteam mit den Freiburger Biochemikern Dr. Nils Wiedemann und Prof. Dr. Nikolaus Pfanner hat erstmals die molekulare Architektur der aktiven TOM-Kanäle entschlüsselt. Die Wissenschaftlerinnen und Wissenschaftler haben ihre Ergebnisse in der Fachzeitschrift „Science“ veröffentlicht.

Fehlfunktionen des Proteinimports in die Mitochondrien führen zu schweren neurologischen Erkrankungen. Solche so genannten Mitochondriopathien entstehen, wenn die Mitochondrien ihre Aufgabe als Zellkraftwerke nicht mehr ausreichend erfüllen und so die Nervenzellen ihre Funktion im menschlichen Körper nicht wahrnehmen können.

Mitochondrien sind abgeschlossene Bestandteile in den Zellen des menschlichen Körpers. In den Mitochondrien laufen die Reaktionen der Zellatmung ab: Sie setzen die in der Nahrung gespeicherte Energie so um, dass Zellen diese nutzen können. Die Zellkraftwerke benötigen mehr als 1.000 verschiedene Proteine, um ihre lebensnotwendige Aufgabe zu erfüllen.

Fast alle dieser Eiweiße müssen aus dem Zellwasser in die Mitochondrien transportiert werden. Diese Aufgabe übernimmt meist TOM. Den Forschenden war bereits bekannt, dass der TOM-Komplex aus verschiedenen Eiweißmolekülen aufgebaut ist, die fest in der Außenmembran verankert sind. Vier TOM-Proteine besitzen einen einfachen Membrananker, eines hat eine Fassstruktur.

Die Wissenschaftler haben nun einzelne Proteinmoleküle in Experimenten verknüpft und so die molekulare Architektur der aktiven TOM-Kanäle rekonstruiert. Im TOM-Komplex sind die Eiweißmoleküle auf eine völlig neue Weise angeordnet als in den bekannten Membrankanälen: Die TOM-Proteine mit Fassstruktur befinden sich zwischen einem Kern und einem äußeren Ring von Membranankerproteinen. Die Forschenden zeigten, dass die Proteine, die in die Mitochondrien transportiert werden sollen, durch die Fässer in die Zellkraftwerke gelangen.

Die Forscherinnen und Forscher vermuten, dass sich die besondere Struktur des TOM-Komplexes aus folgendem Grund gebildet hat: TOM-Proteine mit einfachem Membrananker sind als Pförtner oder Rezeptoren dafür zuständig, Proteine zu erkennen und auszuwählen, die in die Mitochondrien transportiert werden. Durch die Anlagerung dieser Rezeptoren rund um die Fassproteine verläuft die Eingangskontrolle an den mitochondrialen Eingangstoren genauer und effizienter, sodass die Mitochondrien ihre Aufgabe als Zellkraftwerke besser wahrnehmen können.

Wiedemann und Pfanner forschen am Institut für Biochemie und Molekularbiologie der Universität Freiburg und sind Mitglieder des Freiburger Exzellenzclusters BIOSS Centre for Biological Signalling Studies und der Spemann Graduate School of Biology and Medicine der Albert-Ludwigs-Universität.

Originalpublikation:
Takuya Shiota, Kenichiro Imai, Jian Qiu, Victoria L. Hewitt, Khershing Tan, Hsin-Hui Shen, Noriyuki Sakiyama, Yoshinori Fukasawa, Sikander Hayat, Megumi Kamiya, Arne Elofsson, Kentaro Tomii, Paul Horton, Nils Wiedemann, Nikolaus Pfanner, Trevor Lithgow, Toshiya Endo (2015). Molecular architecture of the active mitochondrial protein gate. In: Science 349 (6255): 1544-1548. DOI: 10.1126/science.aac6428

Kontakt:
Dr. Nils Wiedemann
Institut für Biochemie und Molekularbiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5280
E-Mail: Nils.Wiedemann@biochemie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2015/pm.2015-09-28.133

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics