Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie widerstehen DNA-Bestandteile schädlicher UV-Einwirkung?

30.11.2010
Quantenchemie gibt Antwort

Das genetische Material der DNA enthält Schutzmechanismen, um sich vor dem UV-Licht der Sonneneinstrahlung zu schützen. Dies ist von essentieller Bedeutung, da es ohne Fotostabilität – also ohne "programmierte" Abwehr der UV-Einwirkung – zu einer raschen Zersetzung von DNA und RNA kommen würde. Im Rahmen eines vom FWF geförderten Projekts konnte eine ForscherInnengruppe um Hans Lischka, Quantenchemiker der Universität Wien, erstmals diese ultraschnellen Prozesse der Fotostabilität der Nukleobasen umfassend darstellen. Dazu erscheint eine Publikation in der aktuellen Ausgabe der renommierten Zeitschrift "Proceedings of the National Academy of Sciences of the United States of America" (PNAS).


Zu sehen sind die speziellen Strukturen der DNA-Nukleobasen, die – nach Einwirkung der Sonneneinstrahlung – für die ultraschnelle, strahlungslose Deaktivierung zurück in den elektronischen Grundzustand verantwortlich sind.
(Copyright: Felix Plasser, Universität Wien)

Die Wirkung des Sonnenlichtes auf unsere Haut führt nicht nur zur erwünschten Bräunung, die das Urlaubsgefühl wohltuend verstärkt, sondern es werden dabei auch Prozesse in Gang gesetzt, die zu schwerwiegenden gesundheitlichen Schädigungen führen können. Ein Forschungsteam um Hans Lischka, Professor am Institut für Theoretische Chemie der Universität Wien, untersucht, welche Schutzmechanismen die Natur vorgesehen hat, um sich vor derartigen schädlichen Einwirkungen zu schützen.

Die Strategie dabei ist einfach und doch hochkomplex: Wenn das UV-Licht die Elektronen in ein höheres Energieniveau bringt, kehren diese ultraschnell in den Ausgangszustand zurück. Dabei wird elektronische Energie in Wärme umgewandelt. Dieser Prozess läuft in einer unvorstellbar kurzen Zeitdimension ab, in bis zu einer Billiardstel Sekunde.

Computersimulationen zu den Eigenschaften der lichtaktiven DNA-Bestandteile

In der Arbeitsgruppe von Hans Lischka (Institut für Theoretische Chemie der Universität Wien) wurde gemeinsam mit Mario Barbatti (heute Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr) und in Zusammenarbeit mit KollegInnen der Tschechischen Akademie der Wissenschaften in Prag mit innovativen Computersimulationen ein anschauliches, dynamisches Bild der Fotostabilität der Nukleobasen gezeichnet. Damit haben sie zur Klärung dieses komplexen Netzwerks von ultraschnellen Prozessen beigetragen. Es konnte dargestellt werden, wie sich die DNA-Bestandteile – die Nukleotide, die in DNA und RNA für die Ausbildung von Basenpaaren verantwortlich sind – unter UV-Bestrahlung gegen Zersetzung schützen.

Neue Methode der Quantenchemie für fotophysikalische Untersuchungen

Die wesentliche Innovation dieser Arbeit liegt in der detailgetreuen Berechnung der Kopplung der Bewegungen der Elektronen mit jener der Atomkerne. Dies gelang dank der am Institut für Theoretische Chemie der Universität Wien entwickelten und weltweit einzigartigen Methoden der Quantenchemie. Die berechneten Bewegungszustände der Nukleobasen zeigen ein äußerst bemerkenswertes dynamisches Zeitverhalten, das sich innerhalb mehrerer Größenordnungen – vom Pico/Billionstel- bis Femto/Billiardstel-Sekunden-Bereich – erstreckt.

Die neu entwickelten Methoden sind nicht nur zur Aufklärung der eben beschriebenen Dynamik in DNA-Nukleobasen geeignet, sondern sie werden auch zur Untersuchung fotophysikalischer Vorgänge in der DNA selbst und in technologisch bedeutsamen Gebieten der Fotovoltaik eingesetzt. Mit den neuen Methoden lassen sich grundlegende Prozesse des Transportes von elektronischer Anregungsenergie und der Ladungstrennung zur Stromgewinnung besser verstehen.

Rechenleistung nur mit gemeinsamen Computerressourcen möglich

Der numerische Aufwand dieser Untersuchungen war enorm und konnte nur unter extensiver Verwendung der Computerressourcen der Universität Wien und des Vienna Scientific Clusters der Universität Wien, der Technischen Universität Wien und der Universität für Bodenkultur Wien erfolgreich abgeschlossen werden.

Publikation:
Proceedings of the National Academy of Sciences of the United States of America (PNAS): Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Mario Barbatti, Adélia J. A. Aquino, Jaroslaw J. Szymczak, Dana Nachtigallová, Pavel Hobza, and Hans Lischka.
Kontakt
Univ.-Prof. i.R. Dr. Hans Lischka
Institut für Theoretische Chemie
Universität Wien
1090 Wien, Währinger Straße 17
T +43-1-4277-527 57
Hans.Lischka@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.univie.ac.at
http://www.pnas.org/cgi/doi/10.1073/pnas.1014982107

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE