Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie widerstehen DNA-Bestandteile schädlicher UV-Einwirkung?

30.11.2010
Quantenchemie gibt Antwort

Das genetische Material der DNA enthält Schutzmechanismen, um sich vor dem UV-Licht der Sonneneinstrahlung zu schützen. Dies ist von essentieller Bedeutung, da es ohne Fotostabilität – also ohne "programmierte" Abwehr der UV-Einwirkung – zu einer raschen Zersetzung von DNA und RNA kommen würde. Im Rahmen eines vom FWF geförderten Projekts konnte eine ForscherInnengruppe um Hans Lischka, Quantenchemiker der Universität Wien, erstmals diese ultraschnellen Prozesse der Fotostabilität der Nukleobasen umfassend darstellen. Dazu erscheint eine Publikation in der aktuellen Ausgabe der renommierten Zeitschrift "Proceedings of the National Academy of Sciences of the United States of America" (PNAS).


Zu sehen sind die speziellen Strukturen der DNA-Nukleobasen, die – nach Einwirkung der Sonneneinstrahlung – für die ultraschnelle, strahlungslose Deaktivierung zurück in den elektronischen Grundzustand verantwortlich sind.
(Copyright: Felix Plasser, Universität Wien)

Die Wirkung des Sonnenlichtes auf unsere Haut führt nicht nur zur erwünschten Bräunung, die das Urlaubsgefühl wohltuend verstärkt, sondern es werden dabei auch Prozesse in Gang gesetzt, die zu schwerwiegenden gesundheitlichen Schädigungen führen können. Ein Forschungsteam um Hans Lischka, Professor am Institut für Theoretische Chemie der Universität Wien, untersucht, welche Schutzmechanismen die Natur vorgesehen hat, um sich vor derartigen schädlichen Einwirkungen zu schützen.

Die Strategie dabei ist einfach und doch hochkomplex: Wenn das UV-Licht die Elektronen in ein höheres Energieniveau bringt, kehren diese ultraschnell in den Ausgangszustand zurück. Dabei wird elektronische Energie in Wärme umgewandelt. Dieser Prozess läuft in einer unvorstellbar kurzen Zeitdimension ab, in bis zu einer Billiardstel Sekunde.

Computersimulationen zu den Eigenschaften der lichtaktiven DNA-Bestandteile

In der Arbeitsgruppe von Hans Lischka (Institut für Theoretische Chemie der Universität Wien) wurde gemeinsam mit Mario Barbatti (heute Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr) und in Zusammenarbeit mit KollegInnen der Tschechischen Akademie der Wissenschaften in Prag mit innovativen Computersimulationen ein anschauliches, dynamisches Bild der Fotostabilität der Nukleobasen gezeichnet. Damit haben sie zur Klärung dieses komplexen Netzwerks von ultraschnellen Prozessen beigetragen. Es konnte dargestellt werden, wie sich die DNA-Bestandteile – die Nukleotide, die in DNA und RNA für die Ausbildung von Basenpaaren verantwortlich sind – unter UV-Bestrahlung gegen Zersetzung schützen.

Neue Methode der Quantenchemie für fotophysikalische Untersuchungen

Die wesentliche Innovation dieser Arbeit liegt in der detailgetreuen Berechnung der Kopplung der Bewegungen der Elektronen mit jener der Atomkerne. Dies gelang dank der am Institut für Theoretische Chemie der Universität Wien entwickelten und weltweit einzigartigen Methoden der Quantenchemie. Die berechneten Bewegungszustände der Nukleobasen zeigen ein äußerst bemerkenswertes dynamisches Zeitverhalten, das sich innerhalb mehrerer Größenordnungen – vom Pico/Billionstel- bis Femto/Billiardstel-Sekunden-Bereich – erstreckt.

Die neu entwickelten Methoden sind nicht nur zur Aufklärung der eben beschriebenen Dynamik in DNA-Nukleobasen geeignet, sondern sie werden auch zur Untersuchung fotophysikalischer Vorgänge in der DNA selbst und in technologisch bedeutsamen Gebieten der Fotovoltaik eingesetzt. Mit den neuen Methoden lassen sich grundlegende Prozesse des Transportes von elektronischer Anregungsenergie und der Ladungstrennung zur Stromgewinnung besser verstehen.

Rechenleistung nur mit gemeinsamen Computerressourcen möglich

Der numerische Aufwand dieser Untersuchungen war enorm und konnte nur unter extensiver Verwendung der Computerressourcen der Universität Wien und des Vienna Scientific Clusters der Universität Wien, der Technischen Universität Wien und der Universität für Bodenkultur Wien erfolgreich abgeschlossen werden.

Publikation:
Proceedings of the National Academy of Sciences of the United States of America (PNAS): Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Mario Barbatti, Adélia J. A. Aquino, Jaroslaw J. Szymczak, Dana Nachtigallová, Pavel Hobza, and Hans Lischka.
Kontakt
Univ.-Prof. i.R. Dr. Hans Lischka
Institut für Theoretische Chemie
Universität Wien
1090 Wien, Währinger Straße 17
T +43-1-4277-527 57
Hans.Lischka@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.univie.ac.at
http://www.pnas.org/cgi/doi/10.1073/pnas.1014982107

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten