Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wer pumpt, wächst besser

26.05.2014

Der Phosphattransport von Pilzen zu Pflanzenwurzeln benötigt eine Protonenpumpe

Phosphor (P) ist ein lebenswichtiges Element für alle Lebewesen. Er ist Bestandteil der DNA, also unseres Erbgutes, und spielt eine wichtige Rolle im Energiehaushalt. Pflanzen nehmen Phosphor in Form von Phosphaten, also Salzen, aus dem Boden auf.


Mit blauem Farbstoff markierte arbuskuläre Mykorrhizastrukturen in einer Wurzel unter dem Lichtmikroskop.

Viele unserer Böden sind an Phosphaten verarmt und weltweit gehen die Phosphatquellen zur Neige, die bisher zur Produktion von Dünger genutzt werden. Eine optimale P-Versorgung unserer Nutzpflanzen ist aber notwendig, um gute Ernteerträge zu erzielen. In diesem Zusammenhang könnte zukünftig eine bislang wenig beachtete Lebensgemeinschaft zwischen Pflanzen und Pilzen eine große Bedeutung erlangen.

Etwa 80 Prozent der Landpflanzen können nämlich eine „Ehe“ mit bestimmten Pilzen eingehen, die dadurch gekennzeichnet ist, dass der Pilz Phosphat aus dem Boden aufnimmt und an die Pflanzen abgibt, während er für seine Dienstleistung von der Pflanze mit Zucker versorgt wird.

Bisher war nicht bekannt, wie der Transport vom Pilz in die Pflanze funktioniert. Wissenschaftler um Franziska Krajinski vom Max-Planck-Institut für Molekulare Pflanzenphysiologie haben nun herausgefunden, dass das Phosphat mit Hilfe einer ganz speziellen Protonenpumpe in die Pflanze gelangt (Plant Cell, DOI 10.1105/tpc.113.120436)

Gibst Du mir – geb‘ ich dir!
Diese Gemeinschaft oder auch Symbiose von Pflanzen und Wurzelpilzen ist eine uralte Erfolgsgeschichte, denn bereits bei der Besiedelung des Festlandes vor über 400 Millionen Jahren erhielten die Pflanzen Unterstützung von Pilzen. Genauer gesagt handelt es sich um arbuskuläre Mykorrhiza-Pilze, die man - anders als zum Beispiel Steinpilze - oberirdisch nicht sehen kann. Diese Pilze dringen mit ihren Pilzfäden (Hyphen) in die Wurzel der Pflanze ein, mit der sie in Symbiose leben. Dort bilden sie Strukturen, die einem Bäumchen, lateinisch arbuscula, ähneln, daher nennt man sie Arbuskel. Wie bei jeder guten Gemeinschaft, wirkt sich die Symbiose positiv auf beide Partner aus. Die Pflanze, die den Pilz mit Zucker versorgt, den sie mit Hilfe der Photosynthese hergestellt hat, erhält im Gegenzug vom Pilz das, für sie lebenswichtige, Phosphat.

Ohne Energie läuft nichts
Die Forschungsobjekte, an denen die Wissenschaftler um Franziska Krajinski vom MPI-MP die Transportvorgänge untersuchten sind der Schneckenklee Medicago truncatula und der Wurzelpilz Rhizophagus irregularis. Auch in der Wurzel sind Pflanzen- und Pilzzellen durch Membranen voneinander getrennt. Auf dem Weg vom Pilz in die Pflanze muss das Phosphat diese Barrieren überwinden. Dafür sind bestimmte Proteine verantwortlich, die pflanzenseitig in der sogenannten periarbuskulären Membran sitzen und wie kleine Laster ihre Fracht vom Pilz in die Pflanze transportieren.

Genau wie die echten Laster benötigen sie dafür Energie. „Proteine können aber nicht einfach an einer Tankstelle halten, um Energie zu tanken, sondern müssen ihre Energie aus einer anderen Quelle beziehen“, kommentiert Dr. Daniela Sieh die Forschungsarbeit. „Unsere Aufgabe war es herauszufinden, woher die Energie für den Transport kommt. Dazu konnten wir auf frühere Arbeiten zurückgreifen, in denen es uns gelungen war ein Gen des Schneckenklees zu identifizieren, das die Informationen für eine Protonenpumpe enthält“, ergänzt Prof. Franziska Krajinski. 

Die Pflanze, die ein großes Interesse daran hat vom Pilz mit Phosphat versorgt zu werden, stellt Energie zur Verfügung, in dem sie auf der Grundlage des bereits identifizierten Gens ein Protein herstellt, das - wie die kleinen Laster, oder besser Transportproteine - ebenfalls in der periarbuskulären Membran lokalisiert ist und Protonen, das sind kleine positiv-geladene Teilchen, in den Zwischenraum zwischen Pilzmembran und periarbuskulären Membran pumpt. Auf diese Weise entsteht ein Konzentrationsgefälle, das heißt, außerhalb der Pflanzenzelle sind sehr viel mehr Protonen vorhanden als innerhalb. Die Transportproteine, betanken sich sozusagen mit diesen Protonen und nutzen sie als Energiequelle, um das Phosphat in die Pflanzenzelle zu transportieren.

Ohne Protonenpumpe kein Phosphat vom Pilz
Um zu beweisen, dass diese Protonenpumpe tatsächlich die Energie für den Phosphattransport bereitstellt, haben die Forscher in ihren aktuellen Versuchen das Gen, das im Schneckenklee die Information für eine Protonenpumpe in sich trägt, ausgeschaltet, so dass es nicht mehr funktionsfähig war. Die Protonenpumpe konnte also nicht mehr hergestellt werden.

Anschließend verglichen die Wissenschaftler die symbiotische Phosphataufnahme und das Wachstum dieser Pflanzen mit sogenannten Wildtyp-Pflanzen, bei denen das Gen weiterhin funktionsfähig und folglich die Protonenpumpe vorhanden war. Die Experimente zeigten, dass der Pilz die Wurzeln beider Pflanzen besiedelte. Unter Phosphatmangel-Bedingungen zeigten die Wildtyp-Pflanzen, allerdings ein deutlich besseres Wachstum, als diejenigen Pflanzen, die auf Grund des stillgelegten Gens keine Protonenpumpe mehr herstellen konnten.

Um die Rolle der Protonenpumpe noch genauer zu untersuchen, verglichen die Wissenschaftler zusätzlich die Phosphataufnahme beider Pflanzentypen. Während bei Wildtyppflanzen eine für die Mykorrhiza-Symbiose typische Aufnahme von Phosphat in die Wurzeln und den Spross nachweisbar war, konnte dieser Prozess bei Pflanzen ohne Protonenpumpe nicht beobachtet werden.

„Wir konnten beweisen, dass ohne die arbuskuläre Protonenpumpe kein Phosphattransport vom Pilz in die Pflanze möglich ist“, sagt Franziska Krajinski, „Ohne diese Pumpe sind die Pflanzen nicht in der Lage, auf phosphatarmen Böden mit Hilfe der Mykorrhizasymbiose gut zu wachsen.“ Vor dem Hintergrund der zunehmenden Knappheit der weltweiten Phosphatvorräte, ist das Verständnis der symbiotischen Prozesse auch für den Nutzpflanzenanbau von großer Bedeutung. Mykorrhiza-Produkte werden bereits im Bioanbau als Ersatz für mineralischen Dünger verwendet, in der Zukunft könnten sie jedoch noch eine viel größere Rolle für die Nährstoffversorgung unserer Nutzpflanzen und damit auch für unsere Ernährung spielen.

Kontakt
Prof. Dr. Franziska Krajinski
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8360
Krajinski@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de/8316/2krajinski

Kathleen Dahncke
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8275
dahncke@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Originalveröffentlichung
Franziska Krajinski, Pierre-Emmanuel Courty, Daniela Sieh, Philipp Franken,
Haoqiang Zhang, Marcel Bucher, Nina Gerlach, Igor Kryvoruchko, Daniela
Zoeller, Michael Udvardi, Bettina Hause
The H+-ATPase HA1 of Medicago truncatula is essential for P transport and
plant growth during arbuscular mycorrhizal symbiosis
Plant Cell, online April 29, 2014, DOI 10.1105/tpc.113.120436

Weitere Informationen:

http://www.mpimp-golm.mpg.de/8316/2krajinski - weitere Informationen zur Forschung von Prof. Dr. Krajinski
http://www.mpimp-golm.mpg.de/ - Informationen zum Max-Planck-Institut für Molekulare Pflanzenphysiologie

Ursula Ross-Stitt | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften