Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Strom durch Bakterienkabel fließt

08.05.2018

Die Böden der Meere und Süßgewässer sind von vertikalen, zentimeterlangen Ketten aus aneinandergereihten Zellen bestimmter Bakterien durchzogen. Diese Bakterienketten erlauben es den einzelnen Zellen, als vielzelliger Organismus in tiefen, sauerstoffarmen Zonen zu überleben. Damit verbinden sie sich mit der sauerstoffreichen Oberfläche, um Nährstoffe aus tiefen Schichten veratmen zu können. Ein internationales Team um Andreas Schramm von der Aarhus University in Dänemark unter Beteiligung von Forschern um Michael Wagner von der Universität Wien konnte nun erstmal direkt in einzelnen Bakterienkabeln Stromfluss nachweisen.

Schon seit längerem ist bekannt, dass in den Böden von Gewässern Strom fließt. Dafür sind lange Ketten aus zehntausenden Zellen bestimmter Bakterien verantwortlich. "Diese sogenannten Kabelbakterien kommen weltweit in den Sedimenten der Meere, Seen und Flüsse in gigantischen Mengen vor", erläutert Andreas Schramm von der Aarhus University.


Phasenkontrastaufnahme von Kabelbakterien.

Copyright: Steffen Larsen


Mit fluoreszierenden Gensonden angefärbte Kabelbakterien.

Copyright: Trine Søgaard

Obwohl eine einzelne Bakterienzelle nur einen tausendstel Millimeter groß ist, finden sich in den oberen Zentimetern eines Quadratmeters Meeresboden tausende Kilometer an Bakterienkabeln. Trotz zahlreicher Versuche ist es ForscherInnen bislang nicht gelungen, direkt in den Bakterienkabeln Stromfluss nachzuweisen.

Mit Laserlicht dem Strom auf der Spur

Experimente mit Kabelbakterien sind schwierig, da diese noch nicht im Labor "gezüchtet" werden können. "Wir hatten die Idee, die Raman-Mikrospektroskopie einzusetzen, um direkt in einzelnen Bakterienkabeln Stromfluss nachzuweisen", erklärt Michael Wagner vom Department für Mikrobiologie und Ökosystemforschung der Universität Wien. Hierfür bauten die WissenschafterInnen mikroskopisch kleine Kammern, die an beiden Enden jeweils ein Loch enthielten.

Eines der Löcher wurde mit Luft gefüllt und das andere mit Schwefelwasserstoff-haltigem Sediment, das Kabelbakterien enthielt. Durch die wassergefüllte Kammer krochen die Kabelbakterien aus dem Sediment zum luftgefüllten Loch und verbanden beide. Damit stellten Wagner und sein Team die natürliche Situation in den Sedimenten sehr gut nach. Anschließend "beschossen" die Mikrobiologen die lebenden Bakterienkabel mit Laserlicht und konnten anhand charakteristischer Verschiebungen der Wellenlänge des gestreuten Lichts den Oxidationszustand kleiner Elektronen-Transportproteine in den Kabeln über ihre gesamte Länge vermessen.

"Wir konnten nachweisen, dass ein Großteil dieser Proteine mit Elektronen beladen ist, wenn wir die Kabel mit einem optischen Skalpell nahe des mit Luft gefüllten Lochs zerschnitten oder den Sauerstoff aus diesem Loch entfernt hatten", so David Berry von der Universität Wien:

"Die Kabelbakterien entziehen also dem Schwefelwasserstoff Elektronen und transportieren sie zu dem luftgefüllten Loch, um sie dort auf den Sauerstoff zu übertragen und so Energie zu gewinnen. Sobald die Verbindung zum Sauerstoff experimentell unterbunden wurde, füllten sich die Kabelbakterien mit Elektronen, da sie diese nicht mehr an den Sauerstoff abgeben konnten“. Damit haben die ForscherInnen den Stromfluss in den Kabeln erstmals beweisen können.

Kabelbenutzung durch andere Mikroben?

"Während der Versuche haben wir immer wieder beobachtet, dass sich um die Kabelbakterien regelrechte Bakterienschwärme bilden, in denen andere Bakterien immer wieder systematisch zu den Kabeln hinschwimmen“ berichtet Jesper Bjerg, der Erstautor der Studie von der Universität Aarhus. Dieses Verhalten konnte jedoch nicht mehr beobachtet werden, sobald die Kabelbakterien experimentell vom Kontakt mit Sauerstoff abgeschnitten wurden.

Die MikrobiologInnen vermuten nun, dass vielleicht nicht nur die Kabelbakterien selbst von der Verkabelung der Gewässerböden profitieren, sondern auch viele andere Bakterien. Derzeit versuchen sie mithilfe der Ramanspektroskopie der Interaktion dieser Bakterienschwärme mit den Kabeln auf die Spur zu kommen.

Publikation in PNAS:
"Long-distance electron transport in individual, living cable bacteria": Jesper T. Bjerga, Henricus T. S. Boschker, Steffen Larsen, David Berry, Markus Schmid, Diego Millo, Paula Tataru, Filip J. R. Meysmand, Michael Wagner, Lars Peter Nielsen, and Andreas Schramm
http://www.pnas.org/cgi/doi/10.1073/pnas.1800367115

Wissenschaftliche Kontakte
Univ.-Prof. Dipl.-Biol. Dr. Dr. h.c.Michael Wagner
Univ.-Prof. Dipl.-Biol. Dr. David Berry
Dr. Markus Schmid
Department für Mikrobiologie und Ökosystemforschung
Forschungsverbund Chemistry meets Microbiology
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-766 00, 12, oder 10
wagner@microbial-ecology.net
berry@microbial-ecology.net
schmid@microbial-ecology.net

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
Universitätsring 1, 1010 Wien
T +43-1-4277-175 33
M +43-664-60277-175 33
alexandra.frey@univie.ac.at

Offen für Neues.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasseraufbereitung: Neues Verfahren eliminiert Hormone
08.05.2018 | Karlsruher Institut für Technologie

nachricht 3D-Struktur der DNA bildet umschriebenen Raum zur Aktivierung der Genexpression durch freie lncRNAs
08.05.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken bahnbrechende neue Methode zur Charakterisierung von Krebsgenen

In einem in der Zeitschrift „Science“ erschienenen Artikel verbinden Forscher des Vienna BioCenter Spitzentechnologien, um die Funktionen wichtiger Krebsgene zu entschlüsseln. Der Schlüssel zu diesem Erfolg ist eine innovative Methode namens „SLAMseq“, die plötzliche Änderungen in der Genexpression einfach messbar macht. Hierdurch ergeben sich neue Möglichkeiten zur Erforschung von krankheitsassoziierten Genen und zielgerichteten Medikamenten.

Alle Zellen in unserem Körper enthalten ein komplettes Verzeichnis genetischer Informationen, das menschliche Genom. Ihre Form und Funktion werden jedoch...

Im Focus: Scientists characterise cancer genes using ground-breaking new method

In a paper in the journal “Science”, researchers from the Vienna BioCenter combine cutting-edge technologies to decipher regulatory functions of important cancer genes. Key to this success is an innovative method called “SLAMseq”, which allows the direct detection of sudden changes in gene expression and thereby revolutionizes the way scientists can investigate effects of genes and drugs.

All cells in our body carry the dictionary of genetic information, the human genome. However, their shape and function are determined by which genes are read...

Im Focus: Nichts geht mehr ohne 3D-Druck - Additive Fertigung ist Kernthema der Konferenz MatX

Egal ob Turbinenschaufeln, individualisierte Hüftgelenke oder Schuhsohlen und Ersatzteile – die Additive Fertigung ist mittlerweile in sämtlichen Anwendungsfeldern und Branchen präsent: Im Maschinenbau, in der Luft- und Raumfahrt bis hin zur Medizintechnik kommen immer mehr Produkte aus dem 3D-Druck zum Einsatz. Die neuesten Entwicklungen und Innovationen präsentieren namhafte Unternehmen und Instituten am 27.und 28. Juni 2018 auf der Internationale Konferenz für Materialinnovationen "MatX" in Nürnberg.

In der Industrie setzt man schon lange auf Additive Fertigung und investiert beachtliche Summen in diesen Technologiebereich. So investiert beispielsweise...

Im Focus: Zwergdünen schreiben Klimageschichte

Bläst der Wind Sandkörner durch die Wüste, entstehen zentimeterkleine Rippel und gewaltige Dünen. Wie es zur Entstehung von sogenannten Megarippeln zwischen diesen beiden Extremen kommt, war bislang ungeklärt. Wissenschaftler der Universität Leipzig und der Ben-Gurion University of the Negev in Israel haben das in gemeinsamen Forschungen herausgefunden. Sie konnten auch klären, wie man aus der Struktur und Dynamik von Megarippeln und verwandten Formationen auf dem Mars Rückschlüsse auf die Klimageschichte ziehen kann. Ihre Erkenntnisse haben sie jetzt in dem renommierten Fachjournal "Nature Physics" veröffentlicht.

Sandwüsten sind alles andere als glatt. Ähnlich wie auf Wasseroberflächen erzeugen turbulente Winde kleine Rippel und deutlich größere Wellen, sogenannte...

Im Focus: Newly improved glass slide turns microscopes into thermometers

Advancement could streamline and boost scientific research all over the world, help computing industry

The humble glass microscope slide may be primed for a makeover.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Klärwerk der Zukunft - Abwasser als Energiequelle

07.05.2018 | Veranstaltungen

Erfolgreiche Planer-Roadshow von dormakaba, theben und Waldmann

07.05.2018 | Veranstaltungen

9. Rittal Branchentag Schiff & See: Digitalisierung schafft neue Services für maritime Wirtschaft

04.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wenn Strom durch Bakterienkabel fließt

08.05.2018 | Biowissenschaften Chemie

Wasseraufbereitung: Neues Verfahren eliminiert Hormone

08.05.2018 | Biowissenschaften Chemie

3D-Struktur der DNA bildet umschriebenen Raum zur Aktivierung der Genexpression durch freie lncRNAs

08.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics