Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Evolution eine Abkürzung nimmt

06.05.2016

Die meisten Bakterien, mit denen wir in der Natur in Kontakt kommen, sind für uns völlig harmlos. Doch ein paar zusätzliche Gene können ansonsten friedliche Mikroben in gefährliche Krankheitserreger verwandeln. Die Nachwuchsforscherin Natalie Jahn aus der Arbeitsgruppe Bakteriengenetik der Friedrich-Schiller-Universität Jena untersucht, wie Bakterienzellen dafür sorgen, dass solche von außen aufgenommenen Gene stabil von Generation zu Generation weitervererbt werden. In ihrer gerade abgeschlossenen Doktorarbeit hat die 28-Jährige Toxin/Antitoxin-Systeme in Bacillus subtilis detailliert charakterisiert und liefert damit die Grundlagen für neue Wege zur Behandlung bakterieller Infektionen.

Bacillus subtilis ist ein winziges stäbchenförmiges, etwa zwei bis fünf Mikrometer langes Bakterium, das in den oberen Schichten des Bodens weit verbreitet ist.


Nathalie Jahn aus der Arbeitsgruppe Bakteriengenetik der Universität Jena hat ein sogenanntes Toxin/Antitoxin-System in B. subtilis detailliert charakterisiert.

Foto: Jan-Peter Kasper/FSU

Im Gegensatz zu seinen nahen Verwandten Bacillus anthracis (Milzbranderreger) und Bacillus cereus (Lebensmittelkeime) sind diese Mikroben völlig harmlos und ein beliebter Modellorganismus für Mikrobiologen.

Doch durch den Einbau bestimmter krankmachender Gene (sogenannter Virulenz-Gene) aus pathogenen Erregern können auch relativ harmlose Bakterien zu gefährlichen Keimen werden. Und das ganz spontan, in freier Natur.

Wie, das erklärt die Biologin Jahn: „Virulenz-Gene gelangen über sogenannte mobile Elemente von einem Bakterium in ein anderes“, sagt die Nachwuchswissenschaftlerin, die in diesem Sommersemester ihre Doktorarbeit an der Universität Jena abgeschlossen hat.

Unter mobilen Elementen verstehen die Forscher kurze Erbgut-Abschnitte, die ihre Position innerhalb des Bakterienchromosoms verändern können. Infolge solcher Positionswechsel komme es aber auch regelmäßig zur Übertragung in andere Bakterienarten, so Jahn.

Eine solche „Abkürzung der Evolution“ kann für die Mikroorganismen von Vorteil sein, weil sie sich mit „neuen“ Genen direkt und schnell auf veränderte Umweltbedingungen einstellen können und nicht erst künftige Generationen von Genveränderungen profitieren.

Damit die Gene aber nicht so schnell, wie sie in die Bakterien gelangt sind, diese wieder verlassen, sind einige mobile Elemente mit einem effizienten Mechanismus versehen, der für einen stabilen Einbau in das Bakteriengenom sorgt.

Mit dem Gift wird gleichzeitig ein Gegengift hergestellt

Einen derartigen Mechanismus hat Natalie Jahn in ihrer Promotionsarbeit in der Arbeitsgruppe von PD Dr. Sabine Brantl aufgeklärt. „Einige mobile Elemente sind mit einem Toxin/Antitoxin-System versehen“, erläutert sie. „Dieses Toxin/Antitoxin-System sorgt dafür, dass die Bakterienzelle bei Verlust des mobilen Elements einen Giftstoff produziert, der die Bakterienzelle töten kann.“

Mit dem Gift wird aber gleichzeitig auch ein Gegengift hergestellt, das das Toxin unschädlich macht und dem Bakterium das Weiterleben ermöglicht. Da das Toxin deutlich langlebiger ist, muss das Antitoxin stetig nachproduziert werden, um das Überleben der Bakterienzelle zu sichern, und das ist nur bei stabilem Erhalt des mobilen Elements im Chromosom möglich.

In den vergangenen Jahren sind in zahlreichen Bakterien-Chromosomen solche Toxin/Antitoxin-Systeme entdeckt worden und haben das Interesse der Forscher geweckt. In ihrer Doktorarbeit hat Natalie Jahn nicht nur den Wirkungsmechanismus eines Toxin/Antitoxin-Paares in Bacillus subtilis aufgeklärt, das sie in ihrer Diplomarbeit identifiziert hatte, und die bisher vorherrschende Lehrmeinung dazu revidiert. Sie hat auch gemeinsam mit anderen Mitarbeitern der Arbeitsgruppe ein neues, bisher unbekanntes Toxin/Antitoxin-System in diesen Bakterien untersucht und charakterisiert.

Die Kenntnisse dieser Regelprozesse dienten in erster Linie der Grundlagenforschung, unterstreicht Dr. Brantl. „Wir können daran lernen, wie Virulenz-Gene oder auch Resistenzen gegenüber Antibiotika stabil in bakteriellen Genomen verankert werden.“ Langfristig lassen sich so neue Angriffspunkte zur Behandlung bakterieller Infektionen aufspüren, so die Leiterin der Arbeitsgruppe Bakteriengenetik der Uni Jena weiter. „Wenn wir einen Weg finden, gezielt das Antitoxin in den Bakterien auszuschalten, könnte das entsprechende Toxin seine ganze Wirkung entfalten und die Erreger sterben ab.“ Auf diese Weise würden die Bakterien zielgenau und quasi mit ihren eigenen Waffen geschlagen.

Weiterführende Literatur:
Meissner, Christin; Jahn, Natalie; Brantl, Sabine. In Vitro Characterization of the Type I Toxin-Antitoxin System bsrE/SR5 from Bacillus subtilis (2016) JOURNAL OF BIOLOGICAL CHEMISTRY, Volume: 291, Issue: 2, Pages: 560-571

Jahn, Natalie; Brantl, Sabine; Strahl, Henrik. Against the mainstream: the membrane-associated type I toxin BsrG from Bacillus subtilis interferes with cell envelope biosynthesis without increasing membrane permeability (2015) MOLECULAR MICROBIOLOGY, Volume: 98, Issue: 4, Pages: 651-666

Kontakt:
Natalie Jahn, PD Dr. Sabine Brantl
Arbeitsgruppe Bakteriengenetik, Friedrich-Schiller-Universität Jena
Philosophenweg 12, 07743 Jena
Tel.: 03641 / 949575, 03641 / 949570
E-Mail: natalie.jahn[at]uni-jena.de, sabine.brantl[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie