Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Evolution eine Abkürzung nimmt

06.05.2016

Die meisten Bakterien, mit denen wir in der Natur in Kontakt kommen, sind für uns völlig harmlos. Doch ein paar zusätzliche Gene können ansonsten friedliche Mikroben in gefährliche Krankheitserreger verwandeln. Die Nachwuchsforscherin Natalie Jahn aus der Arbeitsgruppe Bakteriengenetik der Friedrich-Schiller-Universität Jena untersucht, wie Bakterienzellen dafür sorgen, dass solche von außen aufgenommenen Gene stabil von Generation zu Generation weitervererbt werden. In ihrer gerade abgeschlossenen Doktorarbeit hat die 28-Jährige Toxin/Antitoxin-Systeme in Bacillus subtilis detailliert charakterisiert und liefert damit die Grundlagen für neue Wege zur Behandlung bakterieller Infektionen.

Bacillus subtilis ist ein winziges stäbchenförmiges, etwa zwei bis fünf Mikrometer langes Bakterium, das in den oberen Schichten des Bodens weit verbreitet ist.


Nathalie Jahn aus der Arbeitsgruppe Bakteriengenetik der Universität Jena hat ein sogenanntes Toxin/Antitoxin-System in B. subtilis detailliert charakterisiert.

Foto: Jan-Peter Kasper/FSU

Im Gegensatz zu seinen nahen Verwandten Bacillus anthracis (Milzbranderreger) und Bacillus cereus (Lebensmittelkeime) sind diese Mikroben völlig harmlos und ein beliebter Modellorganismus für Mikrobiologen.

Doch durch den Einbau bestimmter krankmachender Gene (sogenannter Virulenz-Gene) aus pathogenen Erregern können auch relativ harmlose Bakterien zu gefährlichen Keimen werden. Und das ganz spontan, in freier Natur.

Wie, das erklärt die Biologin Jahn: „Virulenz-Gene gelangen über sogenannte mobile Elemente von einem Bakterium in ein anderes“, sagt die Nachwuchswissenschaftlerin, die in diesem Sommersemester ihre Doktorarbeit an der Universität Jena abgeschlossen hat.

Unter mobilen Elementen verstehen die Forscher kurze Erbgut-Abschnitte, die ihre Position innerhalb des Bakterienchromosoms verändern können. Infolge solcher Positionswechsel komme es aber auch regelmäßig zur Übertragung in andere Bakterienarten, so Jahn.

Eine solche „Abkürzung der Evolution“ kann für die Mikroorganismen von Vorteil sein, weil sie sich mit „neuen“ Genen direkt und schnell auf veränderte Umweltbedingungen einstellen können und nicht erst künftige Generationen von Genveränderungen profitieren.

Damit die Gene aber nicht so schnell, wie sie in die Bakterien gelangt sind, diese wieder verlassen, sind einige mobile Elemente mit einem effizienten Mechanismus versehen, der für einen stabilen Einbau in das Bakteriengenom sorgt.

Mit dem Gift wird gleichzeitig ein Gegengift hergestellt

Einen derartigen Mechanismus hat Natalie Jahn in ihrer Promotionsarbeit in der Arbeitsgruppe von PD Dr. Sabine Brantl aufgeklärt. „Einige mobile Elemente sind mit einem Toxin/Antitoxin-System versehen“, erläutert sie. „Dieses Toxin/Antitoxin-System sorgt dafür, dass die Bakterienzelle bei Verlust des mobilen Elements einen Giftstoff produziert, der die Bakterienzelle töten kann.“

Mit dem Gift wird aber gleichzeitig auch ein Gegengift hergestellt, das das Toxin unschädlich macht und dem Bakterium das Weiterleben ermöglicht. Da das Toxin deutlich langlebiger ist, muss das Antitoxin stetig nachproduziert werden, um das Überleben der Bakterienzelle zu sichern, und das ist nur bei stabilem Erhalt des mobilen Elements im Chromosom möglich.

In den vergangenen Jahren sind in zahlreichen Bakterien-Chromosomen solche Toxin/Antitoxin-Systeme entdeckt worden und haben das Interesse der Forscher geweckt. In ihrer Doktorarbeit hat Natalie Jahn nicht nur den Wirkungsmechanismus eines Toxin/Antitoxin-Paares in Bacillus subtilis aufgeklärt, das sie in ihrer Diplomarbeit identifiziert hatte, und die bisher vorherrschende Lehrmeinung dazu revidiert. Sie hat auch gemeinsam mit anderen Mitarbeitern der Arbeitsgruppe ein neues, bisher unbekanntes Toxin/Antitoxin-System in diesen Bakterien untersucht und charakterisiert.

Die Kenntnisse dieser Regelprozesse dienten in erster Linie der Grundlagenforschung, unterstreicht Dr. Brantl. „Wir können daran lernen, wie Virulenz-Gene oder auch Resistenzen gegenüber Antibiotika stabil in bakteriellen Genomen verankert werden.“ Langfristig lassen sich so neue Angriffspunkte zur Behandlung bakterieller Infektionen aufspüren, so die Leiterin der Arbeitsgruppe Bakteriengenetik der Uni Jena weiter. „Wenn wir einen Weg finden, gezielt das Antitoxin in den Bakterien auszuschalten, könnte das entsprechende Toxin seine ganze Wirkung entfalten und die Erreger sterben ab.“ Auf diese Weise würden die Bakterien zielgenau und quasi mit ihren eigenen Waffen geschlagen.

Weiterführende Literatur:
Meissner, Christin; Jahn, Natalie; Brantl, Sabine. In Vitro Characterization of the Type I Toxin-Antitoxin System bsrE/SR5 from Bacillus subtilis (2016) JOURNAL OF BIOLOGICAL CHEMISTRY, Volume: 291, Issue: 2, Pages: 560-571

Jahn, Natalie; Brantl, Sabine; Strahl, Henrik. Against the mainstream: the membrane-associated type I toxin BsrG from Bacillus subtilis interferes with cell envelope biosynthesis without increasing membrane permeability (2015) MOLECULAR MICROBIOLOGY, Volume: 98, Issue: 4, Pages: 651-666

Kontakt:
Natalie Jahn, PD Dr. Sabine Brantl
Arbeitsgruppe Bakteriengenetik, Friedrich-Schiller-Universität Jena
Philosophenweg 12, 07743 Jena
Tel.: 03641 / 949575, 03641 / 949570
E-Mail: natalie.jahn[at]uni-jena.de, sabine.brantl[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics