Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weniger ist mehr – Heuschrecken erkennen mit wenigen Zellen arteigenen Gesang

12.08.2011
Unsere Sinne werden ständig mit Reizen überflutet. Um wichtige von unwichtiger Information zu unterscheiden, liefern bereits unsere Sinnesorgane eine wertvolle Vorverarbeitung für das Gehirn.

Dass bereits wenige Zellen ausreichen, um selbst komplexe Reize zu verarbeiten, haben nun Wissenschaftler des Bernstein Zentrums Berlin und der Humboldt-Universität zu Berlin in der Fachzeitschrift PNAS gezeigt.


Die Ohren der Feldheuschrecken sitzen im Hinterleib, wichtige Schall verarbeitende Nervenzellen im Brustbereich. Im Gehirn kommt nur stark gefilterte Information an. © Sandra Wohlgemuth

Sie untersuchten, wie das Hörsystem von Heuschrecken die artspezifischen Balzgesänge erkennt und stellten fest, dass dafür nur drei zelluläre Verschaltungen notwendig sind. Dabei stört nicht einmal, dass die ans Gehirn weitergegebenen Signale weit weniger präzise sind als die Eingangssignale.

Millionen von Reizen strömen auf uns ein, doch nur ein Bruchteil ist für uns von Bedeutung. Damit unser Gehirn dabei nicht den Überblick verliert, werden die Reize von den Sinnesorganen gefiltert und vorverarbeitet. Die Netzhaut etwa sendet nicht nur einzelne Bildpunkte ans Gehirn, sondern unter anderem Informationen über Bewegungen und Konturen. Doch dafür ist ein großes Netzwerk aus vielen tausend Zellen notwendig. Bei vielen Tieren aber sind die Nervennetze der Sinnesorgane wesentlich einfacher aufgebaut.

Forscher um Prof. Bernhard Ronacher, Prof. Susanne Schreiber und Dr. Sandra Wohlgemuth vom Bernstein Zentrum und der Humboldt-Universität in Berlin fragten sich daher, wie effizient einfache Netzwerke die Vorverarbeitungen komplexer Reize durchführen können. Dazu untersuchten sie das Hörsystem von Feldheuschrecken, das wichtig für das Erkennen arteigener Balzgesänge ist. Die untersuchten Zellen finden sich in den Brustganglien der Tiere. Die Wissenschaftler entdeckten zu ihrer Überraschung, dass die Informationen bereits nach drei zellulären Verarbeitungsschritten stark verändert und vor allem zeitlich ungenauer waren. Dennoch enthielten die ans Gehirn geleiteten Signale die wesentlichen Informationen über Gesangsmerkmale.

Die Balzgesänge unterschiedlicher Heuschrecken-Arten zeichnen sich durch einen Wechsel von Silben und Pausen aus. Die Aktivität der Sinneszellen, die in den Ohren am Hinterleib der Tiere sitzen, war zeitlich sehr präzise an die eintreffenden Reizmuster gekoppelt. Dies erlaubt den Tieren eine sehr genaue Klassifizierung der Muster der Balzgesänge. Doch bereits die nachfolgenden Zellen zeigten ein spezifisches Aktivitätsmuster, das nur einen Bruchteil der Informationen weiterleitete. „Zu Beginn waren wir sehr erstaunt, dass unser Netzwerk die so wichtige Präzision zerstört“, erklärt Erstautor Jan Clemens. Doch ihre Analysen zeigen den Grund für die veränderten Signale: „Während zu Beginn der Verarbeitung die meiste Information in der genauen zeitlichen Abfolge der neuronalen Signale steckte, entsprechen die Ausgangssignale eher einer Ja-Nein-Antwort“, erklärt Arbeitsgruppenleiterin Susanne Schreiber. So gehen zwar viele Informationen auf dem Weg ins Gehirn der Heuschrecken verloren. Doch der wesentliche Inhalt, nämlich ob der Gesang von einem arteigenen Männchen stammt oder von einem artfremden, steht dem Tier deutlich einfacher zur Verfügung.

Damit entspricht auch dieses kleine Netzwerk der Theorie, nach der die Informationsverarbeitung in Nervensystemen hocheffizient sein sollte, um in der Evolution bestehen zu können. Im nächsten Schritt möchten die Berliner Wissenschaftler dieses Netzwerk der Heuschrecken am Computer nachbilden und so wichtige Aspekte der Datenverarbeitung genauer verstehen lernen.

Das Bernstein-Zentrum Berlin ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience (NNCN). Das NNCN wurde vom BMBF mit dem Ziel gegründet, die Kapazitäten im Bereich der neuen Forschungsdisziplin Computational Neuroscience zu bündeln, zu vernetzen und weiterzuentwickeln. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Originalveröffentlichung:
Clemens J, Kutzki O, Ronacher B, Schreiber S*, Wohlgemuth S* (2011): Efficient transformation of an auditory population code in a small sensory system, PNAS doi:10.1073/pnas.1104506108, *equal contribution

http://www.pnas.org/content/early/2011/08/03/1104506108.abstract

Ansprechpartner:
Professor Dr. Susanne Schreiber
s.schreiber@hu-berlin.de
FachInstitut für Theoretische Biologie
Humboldt-Universität zu Berlin
Invalidenstr. 43
10115 Berlin
Phone: ++49-30-2093 8652
Jan Clemens
clemensjan@gmail.com
Institut für Biologie / AG Verhaltensphysiologie
Humboldt-Universität zu Berlin
Invalidenstraße 43
10115 Berlin
Phone: ++49-30-2093-8777

Johannes Faber | idw
Weitere Informationen:
http://www.bccn-berlin.de/
http://www.nncn.de/
http://www.hu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics