Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit erste löchrige Flüssigkeit entwickelt

16.11.2015

Ein internationales Forschungsteam hat die weltweit erste permanent poröse Flüssigkeit entwickelt. Dazu verbanden sie leere starre Molekülkäfige an den Ecken mit Molekülen, die einerseits als Flüssigkeit wirkten, andererseits aber nicht in die Käfige eindrangen. Das neue Material kombiniert die Vorteile einer Flüssigkeit mit denen eines festen Adsorbtionsmittels und könnte als flüssiger Filter in der Industrie Anwendung finden.

Die Forschungsergebnisse, über die die Fachzeitschrift Nature aktuell berichtet, entstanden unter Federführung von Forschenden der Queens University Belfast in Nordirland. Beteiligt waren Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU), der argentinischen Universidad Nacional de Cuyo, der Universität Liverpool und der französischen Université Blaise Pascal.


Tönjes Koschine und Klaus Rätzke (v.l.) diskutieren die neuen Forschungsergebnisse.

Foto/Copyright: Reinhard Krause-Rehberg, Halle

Eigentlich haben Flüssigkeiten keine stabilen größeren Löcher beziehungsweise Poren. Da deren Moleküle alle beweglich sind, zerfallen Poren sofort wieder. Poröse Festkörper andererseits wie Zeolithe und Metall-organische Gerüste (metal organic frameworks, MOF) werden schon länger in chemischen Prozessen, etwa der Katalyse und Gastrennung, in der Industrie eingesetzt.

Diese starren Strukturen haben dauerhaft bestehende Poren gleicher Größe. Darin lassen sich Abfallprodukte wie Methan speichern. Probleme tauchen aber immer wieder auf, wenn sie in bestehende chemische Anlagen eingefügt werden sollen. Poröse Flüssigkeiten, die als Filter funktionieren, würden solche Hürden überwinden: sie könnten zum Beispiel einfach durch Leitungen gepumpt werden.

Sehr nah dran an dieser Anwendung sind nun die Forschenden mit ihrer neuen Materialklasse. Sie besteht aus Molekülkäfigen, die in einer Flüssigkeit aus Kronenether gelöst werden. Um die Käfige löslich zu machen, bauten die Wissenschaftlerinnen und Wissenschaftler jeweils sechs Kronenether-Molekülgruppen an die Ecken der Käfige. Trotz einer hohen Konzentration an Käfigen erreichten sie auf diese Weise eine bei Raumtemperatur flüssige Substanz.

Herauszufinden, ob die Käfige in der Flüssigkeit auch wirklich leer waren, war Aufgabe der Experten von der Kieler Universität um den Professor für Materialverbunde Franz Faupel.

Mit der sogenannten Positronenlebenszeitspektroskopie – einer Methode, die nur eine Handvoll Forschungsgruppen weltweit beherrschen – wiesen sie auch die Größe der Löcher experimentell nach. Dazu schoss Doktorand Tönjes Koschine mit Positronen, also Antimaterie, auf eine Probe der porösen Flüssigkeit. Positronen zerfallen sofort, wenn sie auf Elektronen treffen.

„Wenn in der Flüssigkeit Löcher sind, gibt es an dieser Stelle auch keine Elektronen, die Positronen ‚leben‘ dort also länger, und das haben wir gemessen“, erklärt Koschine. Die Länge der Lebenszeit erlaube den Kieler Forschern auch Rückschlüsse auf die Größe der Poren.

„Positronen leben in den Löchern etwa 10 Mal länger als wenn sie direkt auf Elektronen treffen, insgesamt also zwei Nanosekunden“, sagt Doktorvater Professor Klaus Rätzke. Eine Nanosekunde entspricht einer milliardstel Sekunde. Damit sind die Hohlräume in den Käfigen circa einen halben Nanometer groß, so groß wie zwei bis drei Atome.

Die Kieler Wissenschaftler haben auf diese Weise die Ergebnisse der Simulationen innerhalb dieser internationalen Forschungskooperation bestätigt und einen wichtigen Beitrag zur Entwicklung und Charakterisierung von neuen Materialien geleistet.

Originalpublikation
Liquids with permanent porosity. Nicola Giri, Mario G. Del Pópolo, Gavin Melaugh, Rebecca L. Greenaway, Klaus Rätzke, Tönjes Koschine, Laure Pison, Margarida F. Costa Gomes, Andrew I. Cooper & Stuart L. James. Nature 527, 216–220 (12 November 2015) doi:10.1038/nature16072
Link: http://www.nature.com/nature/journal/v527/n7577/full/nature16072.html


Kontakt:
Professor Dr. Klaus Rätzke
Institut für Materialwissenschaft
Tel.: 0431/880 6227
E-Mail: kr@tf.uni-kiel.de

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen.

Mehr Informationen auf www.kinsis.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie