Wegweiser für chemische Druckknöpfe

Wissenschaftler beneiden die Natur um ihre Fähigkeit, hochkomplexe Strukturen wie Organe und Gewebe von Lebewesen problemlos in geordneter Weise aufzubauen.

Ihnen selbst gelingt es nur mit Mühe, definierte Strukturen auf Mikroebene herzustellen. Pierre Schaaf und ein Team von Wissenschaftlern aus Straßburg haben der Natur nun einen ihrer Tricks abgeschaut, um einen Polymerfilm gezielt auf eine Oberfläche „aufwachsen“ zu lassen. Wie die Forscher in der Zeitschrift Angewandte Chemie berichten, nutzen sie dazu wie die Natur so genannte Morphogene: Signalmoleküle, die der Reaktion den Weg weisen.

Bei der Entstehung von Knochen, von Muschelschalen oder dem komplizierten Gerüst von Kieselalgen müssen die beteiligten Prozesse der Biomineralisation in genau gelenkten Bahnen laufen. Moleküle dürfen nicht einfach unkontrolliert miteinander reagieren, wenn sie aufeinander treffen. Damit sich ein komplexer Organismus entwickeln kann, muss jede einzelne Zelle wissen, wo sie sich innerhalb eines wachsenden Organs befindet. Spezielle Signalmoleküle, Morphogene, zeigen ihr das an. Sie werden an einer bestimmten Stelle gebildet und verteilen sich dann in das umgebende Gewebe. So entstehen Konzentrationsgradienten, an denen sich die Zellen „orientieren“.

Eine ähnliche Strategie wählten nun Schaaf und seine Kollegen, um feine Filme auf einem Substrat zu bilden. Auch sie nutzen eine Art Morphogen, um den Prozess zu steuern. Als Reaktionspartner dienten ein Polymer mit Azidgruppen (–N3) und eines mit Alkingruppen (–C≡CH) als Seitengruppen. In Anwesenheit von einfach positiv geladenen Kupferionen CuI reagieren diese Gruppen miteinander unter Bildung eines Kohlenstoff-Stickstoff-Fünfrings und vernetzen so die Polymere miteinander. Man nennt diese Reaktion „Klick-Chemie“, weil die Reaktionspartner einfach wie mit einem Druckknopf aneinander geknüpft werden.

In einer Lösung, in der beide Klick-Partner sowie CuI-Ionen vorhanden sind, würde die Reaktion sofort blindlings loslaufen. Ein dünner Polymerfilm würde auf diese Weise nicht entstehen. Die Idee war nun, nur die zu beschichtende Oberfläche mit CuI-Ionen als Morphogene auszustatten. Und das machten die Forscher folgendermaßen: Sie gaben zweifach positiv geladene Kupferionen CuII in die Lösung. An die Oberfläche wurde dann eine elektrische Spannung angelegt. Gelangt ein CuII-Ion an die geladene Oberfläche, nimmt es ein Elektron auf und wird zu CuI. CuI-Ionen befinden sich also vor allem dicht an der Oberfläche. Wo CuI-Ionen sind, läuft auch die Klick-Reaktion ab, die Polymere vernetzen nur an der Oberfläche zu einem durchgehenden Film. Über die angelegte Spannung kann die Menge an CuI-Ionen und damit die Filmdicke reguliert werden.

Angewandte Chemie: Presseinfo 17/2011

Autor: Pierre Schaaf, Institut Charles Sadron, Strasbourg (France), http://www-ics.u-strasbg.fr/spip.php?article284

Angewandte Chemie 2011, 123, No. 19, 4466–4469, Permalink to the article: http://dx.doi.org/10.1002/ange.201007436

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartiges Material für nachhaltiges Bauen

Innovativer Werkstoff für eine energieeffiziente Architektur: Forschende des Karlsruher Instituts für Technologie (KIT) stellen in der aktuellen Ausgabe der Fachzeitschrift Nature Communications ein polymerbasiertes Material mit besonderen Eigenschaften vor. Das…

Neues Antibiotikum gegen Erreger der Flussblindheit und Lymphatischen Filariose

Prof. Achim Hoerauf, Direktor des Instituts für Medizinische Mikrobiologie, Immunologie und Parasitologie des Universitätsklinikums Bonn (UKB), und seinem Team ist es in Kollaboration mit der Abteilung Pharmazeutische Technologie und Biopharmazie…

Evolutionäre Genomik: Folgen biodiverser Fortpflanzungssysteme

Die Deutsche Forschungsgemeinschaft (DFG) fördert die Einrichtung eines neuen Graduiertenkollegs (GRK) in der Biologie an der Universität Göttingen. Das GRK mit dem Titel „Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems…

Partner & Förderer