Wasserstoffproduktion: Wenn sich Enzyme im Reagenzglas selbst zusammenbauen

Grünalgen besitzen ein Enzym für die Wasserstoffproduktion, die Hydrogenase. Thomas Happe baut es mit seinen Kollegen im Reagenzglas nach. © RUB, Katja Marquard

Bochumer Forscher haben ein wasserstoffproduzierendes Enzym im Reagenzglas nachgebaut, das genauso effizient arbeitet wie das Original. Das Protein – eine sogenannte Hydrogenase aus Grünalgen – besteht aus einem Proteingerüst und einem Kofaktor. Letzterer ist das Reaktionszentrum, an dem die miteinander reagierenden Substanzen andocken. Gaben die Forscher verschiedene chemisch synthetisierte Substanzen zu dem Proteingerüst hinzu, setzte sich der Kofaktor daraus spontan selbst zusammen.

Das Team um Dr. Jens Noth und Prof. Dr. Thomas Happe von der Ruhr-Universität Bochum berichtet die Ergebnisse in der Zeitschrift „Angewandte Chemie“. Die Forscher wollen die Basis für künstliche wasserstoffproduzierende Enzyme legen, die eines Tages im industriellen Maßstab herstellbar sind. Hydrogenasen sind sehr effiziente Produzenten des potenziellen Energieträgers. Sie kommen ohne das teure Edelmetall Platin aus, das aktuell für die Wasserstoffsynthese gebraucht wird.

Schwefel gegen Selen ausgetauscht

In der Natur besteht der Hydrogenase-Kofaktor aus Eisen- und Schwefelatomen. Sie sind auf einzigartige Weise in dem Protein gebunden. In der künstlichen Variante ersetzten die Wissenschaftler die Schwefelatome durch Selenatome, die mehr als die doppelte Masse besitzen. Auf diese Weise markierten die Forscher den Kofaktor des Enzyms und konnten ihn genauer analysieren.

Die Tests ergaben, dass die künstliche Enzymvariante die gleichen biochemischen Eigenschaften besitzt wie das Original aus der Natur. Mit weiteren biophysikalischen Methoden will die Gruppe künftig den Reaktionsmechanismus genauer ergründen, mit dem die Hydrogenase Wasserstoff produziert.

Kooperationspartner aus der Ruhr-Universität

Die Arbeitsgruppe Photobiotechnologie von Thomas Happe kooperierte für die Studie mit dem Team von Dr. Ulf-Peter Apfel aus der Anorganischen Chemie und den biophysikalischen Gruppen von Prof. Dr. Klaus Gerwert und Prof. Dr. Eckhard Hofmann.

Förderung

Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen der Deutsch-Israelischen Projektkooperation „Nanoengineered optoelectronics with biomaterials and bioinspired assemblies“ sowie im Rahmen des Exzellenzclusters Resolv (EXC1069) und eines Emmy-Noether-Stipendiums (AP242/2-1). Weitere Unterstützung kam von der der Volkswagen-Stiftung (LigH2t) und dem Verband der Chemischen Industrie (Liebig-Stipendium).

Originalveröffentlichung

Jens Noth et al.: [FeFe]-hydrogenase with chalcogenide substitutions at the H-cluster maintains full H2 evolution activity, in: Angewandte Chemie, 2016, DOI: 10.1002/ange.201511896

Pressekontakt

Prof. Dr. Thomas Happe, Arbeitsgruppe Photobiotechnologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Tel.: 0234 32 27026, E-Mail: thomas.happe@rub.de

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer