Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus Methanol für Brennstoffzellen

05.05.2014

Eine ganze Kaskade an chemischen Reaktionen läuft ab, wenn aus Methanol mit Hilfe von Metall-Katalysatoren Wasserstoff gewonnen wird. An der TU Wien werden diese Prozesse untersucht, Karin Föttinger und Christoph Rameshan erhielten dafür zwei Forschungspreise.

Wenn Wasserstoff mit Sauerstoff zu Wasser reagiert, wird Energie frei. Diese Reaktion nutzt man in Brennstoffzellen. Ein wesentliches Problem dabei ist allerdings die Aufbewahrung des benötigten Wasserstoffs, daher versucht man, Wasserstoff in Form von Methanol zu speichern, und das Methanol dann wieder in Wasserstoff und Kohlendioxid zu zerlegen. Das gelingt mit speziellen Metall-Katalysatoren, die an der TU Wien untersucht werden.


Christoph Rameshan

TU Wien


Karin Föttinger

TU Wien

Unklar war lange Zeit, welche Atome und Moleküle auf der Katalysator-Oberfläche überhaupt eine wichtige Rolle spielen. Verschiedene Messungen zeigen nun: Entscheidend ist das Zusammenspiel aus Metallen und Metalloxiden. Karin Föttinger und Christoph Rameshan, beide am Institut für Materialchemie der TU Wien tätig, erhielten für Arbeiten dazu jeweils einen Forschungspreis.

Nano-Partikel auf Oxid-Oberflächen

Methanol ist das kleinste Alkoholmolekül und wird in großen Mengen industriell hergestellt. In Zukunft könnte Methanol eine wichtige Rolle als Energieträger spielen. Denn wenn es gelingt, ihn effizient und umweltfreundlich in Wasserstoff und CO2 umzuwandeln, kann aus dem Wasserstoff in einer Brennstoffzelle saubere Energie gewonnen werden. Die sogenannte Dampfreformierung, bei der aus Methanol mit Wasserdampf Kohlendioxid und Wasserstoff entsteht, läuft allerdings nur mit Hilfe bestimmter Katalysatoren ab, wie etwa mit Metall-Nanopartikeln auf Oxid-Oberflächen.

Das Ziel ist, aus Methanol und Wasserdampf ein möglichst reines Gemisch von CO2 und molekularem Wasserstoff herzustellen. Kohlenmonoxid soll darin nicht enthalten sein, weil das den Brennstoffzellen schaden würde. Die Kohlenmonoxid-Konzentration im Produktgas hängt ganz entscheidend von der Art des verwendeten Katalysators ab.

An der TU Wien werden diese katalytischen Vorgänge im Rahmen des Spezialforschungsbereichs FOXSI untersucht, der von Prof. Günther Rupprechter vom Institut für Materialchemie geleitet wird. Die Prozesse, die an der Katalysatoroberfläche ablaufen, sind sehr kompliziert: „Unterschiedliche Atom- und Molekülsorten sind beteiligt“, erklärt Karin Föttinger. „Oft ist schwer zu sagen, welche für die Reaktion wichtig sind, und welche eine untergeordnete Rolle spielen.“

In der Industrie versucht man, solche Prozesse durch Versuch und Irrtum anzupassen, die Zusammensetzung der Katalysatoren oder Parameter wie Druck und Temperatur zu verändern, doch an der TU Wien geht man einen Schritt weiter: Karin Föttinger untersucht mit modernen spektroskopischen Methoden, wie die Reaktionen am Katalysator im Detail ablaufen. Christoph Rameshan trennt die einzelnen Komponenten des Katalysators und analysiert sie in Modellsystemen einzeln. So wird es einfacher, genau zu verstehen, was bei den komplizierten chemischen Prozessen an der Katalysator-Oberfläche alles passiert.

Oft werden als Katalysatoren winzige Nanopartikel aus Metall verwendet, etwa aus Palladium. Diese Partikel werden auf Metalloxid-Oberflächen, zum Beispiel Zinkoxid gesetzt. Heiß diskutiert wurde in den letzten Jahren die Frage, ob das Reinmetall oder das Oxid für die Katalyse zuständig ist. „Unsere Messungen zeigen: Man braucht beides“, erklärt Karin Föttinger. „Das Oxid ist wichtig für die Wasseraktivierung, für die Aufspaltung der Wassermoleküle. Das Metall hingegen ist wichtig für die Aufspaltung des Methanols“, so Rameshan. Diese Erkenntnisse können nun dazu genutzt werden, die Katalysatoren zu verbessern, indem man beispielsweise durch Nanostrukturierung die Metall-Oxid-Grenzfläche optimiert.

Auszeichnung für TU-Forschung

Die Arbeiten am Institut für Materialchemie wurden nun durch zwei Forschungspreise gewürdigt: Karin Föttinger erhielt den angesehenen Theodor-Körner-Förderungspreis, um zusätzliche experimentelle Geräte für weitere Forschungen finanzieren zu können. Christoph Rameshan wurde der Gerhard Ertl Young Investigator Award 2014 zugesprochen, der jährlich vom Journal Surface Science für herausragende Forschungsleistungen vergeben wird.

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/wasserstoff/

Rückfragehinweis:
Prof. Günther Rupprechter
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165100
guenther.rupprechter@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie