Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachsendes Gehirn ist besonders flexibel

22.06.2010
Wissenschaftler haben untersucht, wie sich das Gehirn während des Wachstums verändert

Schon lange rätselt die Wissenschaft, warum das Gehirn bei Babys besonders flexibel ist und sich leicht verändert. Liegt es daran, dass Babys viel lernen müssen? Eine Gruppe von Wissenschaftlern des Bernstein Netzwerks Computational Neuroscience, dem Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen, der Schiller-Universität Jena sowie der Princeton University (USA) schlagen nun eine neue Erklärung vor: Vielleicht liegt es einfach daran, dass das Gehirn noch wachsen muss.

In einer Kombination von Experimenten, mathematischen Modellen und Computersimulationen zeigten sie, dass neuronale Verbindungen in der Sehrinde von Katzen während der Wachstumsphase umstrukturiert werden und dass sich dieser Umbau durch Selbstorganisationsprozesse erklären lässt. Geleitet wurde die Studie von Matthias Kaschube, ehemals Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation und jetzt an der Princeton University (USA). (PNAS, online veröffentlicht 21. Juni 2010)

Das Gehirn ändert sich ständig. Neuronale Strukturen sind nicht fest verdrahtet, sondern werden mit jedem Lernen und jeder Erfahrung abgewandelt. Besonders flexibel aber sind bestimmte Gehirnbereiche bei neugeborenen Babys. Die Entwicklung der Sehrinde kann in Tierexperimenten beispielsweise in den ersten Monaten nach der Geburt durch unterschiedliche visuelle Reize stark beeinflusst werden.

Nervenzellen in der Sehrinde von erwachsenen Tieren teilen sich die Verarbeitung von Informationen aus den beiden Augen auf: Einige "sehen" nur das linke Auge, andere nur das rechte. Dabei liegen Zellen rechter bzw. linker Spezialisierung jeweils in kleinen Gruppen beieinander, genannt Kolumnen. Beim Größenwachstum, so zeigten die Forscher, werden diese Strukturen nicht einfach aufgebläht – Kolumnen werden nicht größer, sondern es werden mehr. Auch entstehen nicht etwa neue Kolumnen aus neuen Nervenzellen. Die Anzahl der Nervenzellen bleibt nahezu unverändert, ein Großteil des Wachstums der Sehrinde ist auf einen Zuwachs nicht-neuronaler Zellen zurückzuführen. Erklären lassen sich diese Veränderungen damit, dass vorhandene Zellen ihre Präferenz für das rechte oder linke Auge ändern. Zudem spricht noch eine weitere Beobachtung der Wissenschaftler für eine solche Umstrukturierung: Die Anordnung der Kolumnen ändert sich. Während das Muster anfangs streifig aussieht, lösen sich die Streifen mit der Zeit auf und das Muster wird ungleichmäßiger.

"Eine solche Umstrukturierung bei gleichzeitiger Funktionsfähigkeit ist eine enorme Leistung des Gehirns", sagt Wolfgang Keil, Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen und Erstautor der Studie. "Es steht kein Ingenieur dahinter, der sie plant, sondern der Prozess muss aus sich selbst heraus entstehen.“ Wie das Gehirn bei dieser Umstrukturierung vorgehen könnte, untersuchten die Wissenschaftler in mathematischen Modellen und Computersimulationen. Einerseits ist das Gehirn bestrebt, Nachbarschaftsverhältnisse in der Sehrinde möglichst einheitlich zu gestalten. Andererseits aber wird die Entwicklung der Sehrinde durch den Sehprozess selbst bestimmt – Zellen, die einmal stärker vom linken bzw. von rechten Auge angeregt werden, versuchen, diese jeweilige Bestimmung beizubehalten. Das Modell der Wissenschaftler erklärt die Kolumnenentstehung unter Berücksichtigung dieser beiden Tendenzen. Wenn das Gewebe wächst und die Kolumnengröße konstant gehalten wird, so zeigten die Wissenschaftler, verändern sich die Kolumnen im Computermodell genau so, wie sie dies in ihren experimentellen Untersuchungen an der Sehrinde der Katze beobachtet hatten: Die Streifen lösen sich in ein Zickzack-Muster auf und werden dadurch unregelmäßiger. Damit liefern die Forscher eine mathematische Grundlage, die realistisch beschreibt, wie sich die Sehrinde während der Wachstumsphase umbauen könnte.

Originalpublikation:
Wolfgang Keil, Karl-Friedrich Schmidt, Siegrid Löwel and Matthias Kaschube. Reorganization of columnar architecture in the growing visual cortex.

PNAS, online veröffentlicht, 21. Juni 2010

Kontaktinformation:
Wolfgang Keil
Max-Planck-Institut für Dynamik und Selbstorganisation
Bunsenstrasse 10
37073 Göttingen
Email: wolfgang(at)nld.ds.mpg.de
Tel: 0551 5176 551

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.bccn-goettingen.de/
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise