Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachsendes Gehirn ist besonders flexibel

22.06.2010
Wissenschaftler haben untersucht, wie sich das Gehirn während des Wachstums verändert

Schon lange rätselt die Wissenschaft, warum das Gehirn bei Babys besonders flexibel ist und sich leicht verändert. Liegt es daran, dass Babys viel lernen müssen? Eine Gruppe von Wissenschaftlern des Bernstein Netzwerks Computational Neuroscience, dem Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen, der Schiller-Universität Jena sowie der Princeton University (USA) schlagen nun eine neue Erklärung vor: Vielleicht liegt es einfach daran, dass das Gehirn noch wachsen muss.

In einer Kombination von Experimenten, mathematischen Modellen und Computersimulationen zeigten sie, dass neuronale Verbindungen in der Sehrinde von Katzen während der Wachstumsphase umstrukturiert werden und dass sich dieser Umbau durch Selbstorganisationsprozesse erklären lässt. Geleitet wurde die Studie von Matthias Kaschube, ehemals Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation und jetzt an der Princeton University (USA). (PNAS, online veröffentlicht 21. Juni 2010)

Das Gehirn ändert sich ständig. Neuronale Strukturen sind nicht fest verdrahtet, sondern werden mit jedem Lernen und jeder Erfahrung abgewandelt. Besonders flexibel aber sind bestimmte Gehirnbereiche bei neugeborenen Babys. Die Entwicklung der Sehrinde kann in Tierexperimenten beispielsweise in den ersten Monaten nach der Geburt durch unterschiedliche visuelle Reize stark beeinflusst werden.

Nervenzellen in der Sehrinde von erwachsenen Tieren teilen sich die Verarbeitung von Informationen aus den beiden Augen auf: Einige "sehen" nur das linke Auge, andere nur das rechte. Dabei liegen Zellen rechter bzw. linker Spezialisierung jeweils in kleinen Gruppen beieinander, genannt Kolumnen. Beim Größenwachstum, so zeigten die Forscher, werden diese Strukturen nicht einfach aufgebläht – Kolumnen werden nicht größer, sondern es werden mehr. Auch entstehen nicht etwa neue Kolumnen aus neuen Nervenzellen. Die Anzahl der Nervenzellen bleibt nahezu unverändert, ein Großteil des Wachstums der Sehrinde ist auf einen Zuwachs nicht-neuronaler Zellen zurückzuführen. Erklären lassen sich diese Veränderungen damit, dass vorhandene Zellen ihre Präferenz für das rechte oder linke Auge ändern. Zudem spricht noch eine weitere Beobachtung der Wissenschaftler für eine solche Umstrukturierung: Die Anordnung der Kolumnen ändert sich. Während das Muster anfangs streifig aussieht, lösen sich die Streifen mit der Zeit auf und das Muster wird ungleichmäßiger.

"Eine solche Umstrukturierung bei gleichzeitiger Funktionsfähigkeit ist eine enorme Leistung des Gehirns", sagt Wolfgang Keil, Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen und Erstautor der Studie. "Es steht kein Ingenieur dahinter, der sie plant, sondern der Prozess muss aus sich selbst heraus entstehen.“ Wie das Gehirn bei dieser Umstrukturierung vorgehen könnte, untersuchten die Wissenschaftler in mathematischen Modellen und Computersimulationen. Einerseits ist das Gehirn bestrebt, Nachbarschaftsverhältnisse in der Sehrinde möglichst einheitlich zu gestalten. Andererseits aber wird die Entwicklung der Sehrinde durch den Sehprozess selbst bestimmt – Zellen, die einmal stärker vom linken bzw. von rechten Auge angeregt werden, versuchen, diese jeweilige Bestimmung beizubehalten. Das Modell der Wissenschaftler erklärt die Kolumnenentstehung unter Berücksichtigung dieser beiden Tendenzen. Wenn das Gewebe wächst und die Kolumnengröße konstant gehalten wird, so zeigten die Wissenschaftler, verändern sich die Kolumnen im Computermodell genau so, wie sie dies in ihren experimentellen Untersuchungen an der Sehrinde der Katze beobachtet hatten: Die Streifen lösen sich in ein Zickzack-Muster auf und werden dadurch unregelmäßiger. Damit liefern die Forscher eine mathematische Grundlage, die realistisch beschreibt, wie sich die Sehrinde während der Wachstumsphase umbauen könnte.

Originalpublikation:
Wolfgang Keil, Karl-Friedrich Schmidt, Siegrid Löwel and Matthias Kaschube. Reorganization of columnar architecture in the growing visual cortex.

PNAS, online veröffentlicht, 21. Juni 2010

Kontaktinformation:
Wolfgang Keil
Max-Planck-Institut für Dynamik und Selbstorganisation
Bunsenstrasse 10
37073 Göttingen
Email: wolfgang(at)nld.ds.mpg.de
Tel: 0551 5176 551

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.bccn-goettingen.de/
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik