Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorbild Natur: Supramolekulare Materialien, die sich selbst entsorgen Moleküle mit Zeitschalter

20.07.2017

Materialien, die sich selbst zusammenfügen und am Ende ihrer Lebenszeit einfach wieder verschwinden – in der Natur gibt es sie in Hülle und Fülle. Forscherinnen und Forschern an der Technischen Universität München (TUM) ist es nun gelungen, supramolekulare Materialien zu entwickeln, die zu einen vorher bestimmten Zeitpunkt wieder zerfallen. Eine Eigenschaft, die zahlreiche Anwendungsmöglichkeiten eröffnet.

Plastikflaschen, leere Dosen, altes Spielzeug, zerrissene T-Shirts und ausgediente Mobiltelefone – Tag für Tag produziert die Menschheit Millionen von Tonnen Abfall. Wie lässt sich verhindern, dass unser Planet eines Tages im Müll erstickt?


Fmoc-Tripeptide bilden vorübergehend Hydrogele.

Bild: Benedikt Rieß / TUM


With the peptide-synthesizer Dr. Marta Tena-Solsona produces the building blocks for the gels she investigates.

Photo: Uli Benz / TUM

Bisher ist Recycling die Methode der Wahl. Aber sie ist teuer: „Viele vom Menschen gemachten Stoffe sind chemisch sehr stabil. Um sie wieder in ihre Bestandteile zu zerlegen, muss man viel Energie aufwenden“, erklärt Job Boekhoven, Professor für Supramolekulare Chemie an der TU München. Der Chemiker verfolgt einen anderen Weg – und orientiert sich dabei an biologischen Prozessen.

Die Natur produziert keine Müllberge. In biologischen Zellen werden die Moleküle ständig recycelt und zum Bau neuer verwendet. Einige dieser Moleküle bilden größere Strukturen, supramolekulare Einheiten, die als Struktur-Bausteine der Zellen dienen. „Diese Dynamik,“ sagt Job Boekhoven, „hat uns dazu inspiriert Materialien zu entwickeln, die sich selbst entsorgen, wenn sie nicht mehr benötigt werden.“

Vorbild Natur

Einer der entscheidenden Unterschiede zwischen vom Menschen hergestellten Stoffen und den meisten biologischen Materialien ist ihr Energiemanagement: Menschgemachte Stoffe befinden sich im Gleichgewicht mit ihrer Umgebung – da kein Austausch von Molekülen oder Energie stattfindet, bleiben sie wie sie sind.

Die Natur arbeitet nach einem anderen Prinzip: Lebendige biologische Materialien wie Haut und Knochen, aber auch einzelne Zellen, sind nicht im Gleichgewicht mit ihrer Umgebung. Für Aufbau Erhalt und Reparatur werden ständig Bausteine und Energie benötigt.

„Diese wird beispielsweise durch Adenosintriphosphat, kurz ATP, zur Verfügung gestellt“, erläutert Boekhoven. „Solange genügend Energie zur Verfügung steht, werden defekte Bestandteile und ganze Zellen abgebaut und durch neue ersetzt, anderenfalls stirbt der Organismus und zerfällt in seine Grundbausteine.“

Übrig bleibt molekularer Staub

Die neuen Materialien, die Boekhoven mit einem interdisziplinären Team von Physikern Chemikern und Ingenieuren an der TUM erforscht, orientieren sich an diesem natürlichen Vorbild: Die molekularen Bausteine sind zunächst frei beweglich. Gibt man jedoch Energie in Form hochenergetischer Moleküle zu, verbinden sie sich zu supramolekulare Strukturen.

Ist die Energie aufgebraucht, zerfallen von selbst. Die Lebensdauer kann dabei durch die zugegebene Menge von Energie vorherbestimmt werden. Im Labor lassen sich die Bedingungen so wählen, dass die Materialien von selbst nach einem bestimmten Zeitraum – Minuten oder Stunden – zerfallen. Und am Ende ihres Lebenszyklus können die Bausteine weitergenutzt werden – einfach indem man wieder hochenergetische Moleküle zugibt.

Vom Labor in die Praxis

Die Wissenschaftler entwarfen verschiedene Anhydride, die sich zu Kolloiden, supramolekularen Hydrogelen oder Tinten zusammensetzen. Angetrieben durch Carbodiimid, das als „Brennstoff“ dabei verbraucht wird, wandelt in diesen Materialien ein chemisches Reaktionsnetzwerk Dicarboxylate in metastabile Anhydride um. Wegen ihres metastabilen Charakters hydrolysieren diese mit Halbwertszeiten im Bereich von Sekunden bis zu einigen Minuten zu ihren ursprünglichen Dicarboxylaten.

Weil sich die Moleküle zu sehr unterschiedlichen Strukturen verbinden, ergeben sich zahlreiche Anwendungsmöglichkeiten: Kugelige Kolloide beispielsweise lassen sich mit wasserunlöslichen Molekülen beladen – man könnte sie nutzen, um Medikamente gegen Krebs direkt zur Tumorzelle zu transportieren. Am Ende ihrer Mission würden sich die Kolloide selbständig auflösen und die Medikamente lokal freisetzen.

Andere Bausteine bilden lange, faserigen Strukturen, die Flüssigkeiten in Gele verwandeln. Diese eignen sich möglicherweise, um frisch transplantiertes Gewebe für eine definierte Zeit zu stabilisieren, bis der Körper ihre Funktion übernehmen kann. Und aus Molekülen, die sternförmigen Anordnungen bilden, ließen sich Tinten mit exakt definierter Haltbarkeit herstellen.

Ob es gelingt, nach dem Vorbild der Natur eines Tages auch supramolekulare Maschinen oder Handys zu bauen, die verschwinden, wenn sie nicht mehr benötigt werden? Ausgeschlossen sei dies zwar nicht, meint Boekhoven, „aber bis dahin ist es noch ein langer Weg. Noch arbeiten wir an den Grundlagen.“

Die Arbeiten wurden gefördert mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des ATUMS Graduiertenprogramms (Alberta/TUM International Graduate School for Functional Hybrid Materials) und über den Exzellenzcluster Nanosystems Initiative Munich (NIM) sowie durch das TUM-Institute for Advanced Study mit Mitteln der DFG und der Europäischen Union.

Publikation:

Far-from-equilibrium supramolecular materials with a tunable lifetime
Marta Tena-Solsona, Benedikt Rieß, Raphael K. Grötsch, Franziska C. Löhrer, Caren Wanzke, Benjamin Käsdorf, Andreas R. Bausch, Peter Müller-Buschbaum, Oliver Lieleg, Job Boekhoven
Nature Communications, 18.07.2017 – DOI: 10.1038/NCOMMS15895

Kontakt:

Prof. Dr. Job Boekhoven
Technische Universität München
Professur für Supramolekulare Chemie
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 54400 – E-Mail: job.boekhoven@tum.de – Web: http://boekhovenlab.com/

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34080/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie