Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Schwefel zu Kohlenstoff

24.01.2017

Unter Chiralität versteht man die Eigenschaft von Objekten, in zwei spiegelbildlichen Formen vorzuliegen, die nicht miteinander zur Deckung gebracht werden können und sich daher zueinander wie unsere linke und rechte Hand verhalten. In seiner jüngsten Arbeit ist es Maulide und seinem Team gelungen, zwischen zwei verschiedenen Elementen – Schwefel und Kohlenstoff – einen so genannten Chiralitätstransfer durchzuführen: Er übertrug die chirale Information über hochselektive Umlagerungsprozesse von Schwefelverbindungen auf ein Kohlenstoffgerüst. Mit der neuen Methode eröffnen sich neue Wege zur Synthetisierung von bioaktiven Molekülen für die Arzneimittelforschung.

Eine Vielzahl der Moleküle, die für das Leben essentiell sind, sind chiral: beispielsweise Kohlenhydrate, RNS und DNS und auch Aminosäuren. Das bedeutet, dass für diese Moleküle eine "linksdrehende" (äquivalent zur linken Hand) und eine "rechtsdrehende" (äquivalent zur rechten Hand) Form existieren können. Diese beiden Formen nennt man "Enantiomere".


Enantiomere Stränge von DNS.

Copyright: Cambridge University/https://bluesci.wordpress.com/2012/10/03/feature-through-the-looking-glass/


Kohlenstoffatome können, so wie Hände, auch chiral sein.

Copyright: Perhelion/Wikimedia Commons; http://bit.ly/1Rwbh2O

In unseren Körpern (und denen anderer Organismen) ist nur eine Enantiomerenform präsent – und dieser Umstand hat großen Einfluss auf jene chemischen Reaktionen, die in uns ablaufen und das Leben bedingen.

ChemikerInnen sehen in chiralen Pharmazeutika ein immer größer werdendes Potenzial in der Arzneimittelforschung. Die Synthese solcher Moleküle in enantiomerenreiner Form ist bis heute eine große Herausforderung in der organischen Synthese. Die Gruppe von Nuno Maulide am Institut für Organische Chemie hat sich – zusammen mit KollegInnen des Instituts für Theoretische Chemie – mit dem Transfer von Chiralität zwischen verschiedenen Atomen und Molekülen befasst und dabei bahnbrechende Ergebnisse erzielt.

Wie sind chirale Moleküle aufgebaut?

"Grundsätzlich enthalten organische Moleküle mehrere Kohlenstoffatome. Wir wissen, dass Kohlenstoff vier chemische Bindungen zu anderen Elementen ausbildet – so werden beispielsweise lange Ketten und komplexe Moleküle gebildet", erklärt Nuno Maulide, Professor für Organische Synthese an der Universität Wien. "Sollten alle vier Substituenten an einem Kohlenstoffatom unterschiedlich sein, so stellt dieser Kohlenstoff ein chirales Zentrum dar. Und somit ist das entsprechende Molekül, in dem dieser Kohlenstoff eingebaut ist, ebenso chiral", so der portugiesische Chemiker.

Andere Elemente können ebenso chiral sein – und ihre Chiralität auf Kohlenstoff übertragen

Kohlenstoff ist aber nicht das einzige Element des Periodensystems, das chiral sein kann. Schwefel, ein oftmals vernachlässigtes Element, kann ebenso vier unterschiedliche Substituenten haben. "Chiraler Schwefel wird oft übersehen, wenn ChemikerInnen von chiralen Elementen reden", sagt Dainis Kaldre, Postdoc in der Maulide-Gruppe und Erstautor der Studie. "Wir fragten uns also: Kann die chirale Information des Schwefels auf Kohlenstoffe übertragen werden?", ergänzt Daniel Kaiser, Coautor der Arbeit. Dem Team ist es nun mit der neuentwickelten Methode gelungen, mehrere chirale Moleküle mit potenziell bioaktiven Eigenschaften zu synthetisieren.

"Man speichert chirale Information am Schwefel – diese kann leicht generiert werden – und verwendet eine, von uns neu entwickelte, chemische Reaktion um sie abzurufen und auf ein Kohlenstoffatom zu übertragen, wo sie besonders wertvoll ist. Um ehrlich zu sein waren wir überrascht, wie leicht das funktioniert", sagt Maulide. Um mechanistische Details besser zu verstehen, wandte sich das Team an die Gruppe von Leticia González am Institut für Theoretische Chemie, mit der eine langjährige Kooperation besteht. "Uns war es möglich ein Modell zu entwerfen, das die Resultate sehr schön beschreibt", betont Gonzalez. "Und das Beste ist, dass einige unserer Voraussagen das Potenzial haben zu neuen Reaktionen zu führen – wir werden also noch eine Weile beschäftigt sein“, so Maulide abschließend.

Publikation in "Angewandte Chemie"
"Asymmetrische Redoxarylierung: Chiralitätstransfer von Schwefel zu Kohlenstoff durch sigmatrope Sulfonium [3,3]-Umlagerung"
Dainis Kaldre, Boris Maryasin, Daniel Kaiser, Leticia González und Nuno Maulide,
in: Angewandte Chemie, 2017.
DOI: 10.1022/acie.201610105
http://onlinelibrary.wiley.com/doi/10.1002/ange.201610105/full

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-602 77-521 55
nuno.maulide@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics