Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Gestank zum Wertstoff

03.04.2014

Gewinnung von Schwefel und Wasserstoff: Spaltung von Schwefelwasserstoff durch Solarenergie

Keiner, der schon mal ein faules Ei aufgeschlagen hat, wird wohl den infernalischen Gestank vergessen. In Biogasanlagen, Klärwerken und Erdölraffinerien können sogar ganz erhebliche Mengen des widerlich riechenden, in höheren Konzentrationen giftigen Schwefelwasserstoffgases entstehen.


Spaltung von Schwefelwasserstoff in Schwefel und Wasserstoff durch Sonnenlicht

(c) Wiley-VCH

Ein australisch-chinesisches Forscherteam stellt in der Zeitschrift Angewandte Chemie einen innovativen photoelektrochemischen Ansatz vor, mit dem sich das unerwünschte Nebenprodukt unter Nutzung von Sonnenenergie in Schwefel und Wasserstoff spalten und so als Rohstoffquelle nutzen lässt.

Mit mehreren Techniken wird Schwefelwasserstoff (H2S) aus belasteter Abluft entfernt und bisher nur vereinzelt genutzt. Während Schwefel in einigen Verfahren rückgewonnen werden kann, gelingt dies mit dem enthaltenen Wasserstoff noch nicht. Schade eigentlich, denn gerade Wasserstoff ist ein wichtiger Energielieferant für die zukunftsträchtige Brennstoffzellentechnik.

Leider kann man H2S aber nicht einfach spalten und im selben Verfahren Schwefel und Wasserstoff gewinnen. Besonders attraktiv erscheint die photochemische Spaltung, denn dabei kann Sonnenenergie den hohen Energiebedarf der Reaktion decken. Bisher ließ sich allerdings noch kein ökologisch und ökonomisch sinnvoller Prozess realisieren. Dies könnte sich dank eines neuen Ansatzes ändern, der vom Team um Lianzhou Wang (University of Queensland, Australien) und Can Li (Chinese Academy of Sciences und Dalian Laboratory for Clean Energy, China) entwickelt wurde.

Erfolgsgeheimnis ist ein photochemisch-chemischer Kreislauf, dessen Reaktionen über ein so genanntes Redoxpaar gekoppelt sind. Ein Redoxpaar ist die Kombination einer reduzierten und einer oxidierten Form desselben Elements, die leicht ineinander umgewandelt werden können. Die Forscher setzten für ihren Ansatz entweder das Paar aus zweiwertigen und dreiwertigen Eisenionen (Fe2+/Fe3+) oder das System Iodid/Triiodid (I−/I3−) ein.

Das Schwefelwasserstoffgas wird in den Elektrolyten des Anodenraums einer elektrochemischen Zelle eingeleitet. Hier wird es durch eine chemische Reaktion mit der oxidierten Form des Redoxpaares, die dabei reduziert wird, gebunden und zu Schwefel, der als gelber Feststoff ausfällt, und Wasserstoffionen umgesetzt. Diese können die halbdurchlässige Membran zwischen Anoden- und Kathodenraum passieren.

Die zweite Reaktion läuft photoelektrochemisch: Während Wasserstoffionen an der Kathode unter Aufnahmen von Elektronen zu Wasserstoff reduziert werden, wird die reduzierte Form des Redoxpaares durch Elektronenabgabe an die Anode wieder in den oxidierten Zustand gebracht. Treibende Kraft ist Sonnenlicht, das in der Photoanode Paare aus Elektronen und „Elektronenlöchern“ erzeugt, die dann durch die aufgenommenen Elektronen wieder aufgefüllt werden können.

Die Redoxpaare durchlaufen einen ständigen Kreislauf zwischen oxidierter und reduzierter Form, sodass als Gesamtreaktion die Spaltung von Schwefelwasserstoff in Schwefel und Wasserstoff durch Sonnenlicht resultiert.

Angewandte Chemie: Presseinfo 12/2014

Autor: Lianzhou Wang, University of Queensland (Australia), http://www.nanomac.uq.edu.au/lianzhou-wang

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201400571

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften