Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren an die Zelle festbinden

09.08.2011
Erstmals gezeigt: Viren-Abwehrstoff kommt fast überall im Körper vor / Forscher des Universitätsklinikums Heidelberg veröffentlichen in “Proceedings of the National Academy of Sciences USA”

Der körpereigene Eiweißstoff Tetherin, auch CD317 genannt, kann Viren sehr effektiv bekämpfen. Jetzt haben Professor Dr. Oliver Keppler, Arbeitsgruppenleiter im Department für Infektiologie, Abteilung Virologie, des Universitätsklinikums Heidelberg, und seine Mitarbeiter erstmals nachgewiesen, dass der Abwehrstoff – anders als bislang angenommen - fast überall im Körper gebildet wird.

Wie CD317 als Teil der angeborenen Immunsystem erfolgreich in der Therapie gegen Viren genutzt werden kann, sollen zukünftige Projekte zeigen. Die Arbeiten wurden jetzt vorab online in der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences USA veröffentlicht.

CD317 ist vor allem gegen solche Viren wirksam, die eine Hülle besitzen, u.a. gegen das Grippevirus (Influenza), HIV und Lassa-Virus. Frühere Laborarbeiten mit Zellkulturen haben gezeigt, dass virusinfizierte Zellen das Protein CD317 in großen Mengen herstellen. Viren, die ihre Wirtszelle verlassen, um neue Körperzellen zu befallen, umgeben sich beim Austritt aus der Zelle mit einer Eiweißhülle. CD317 lagert sich in diese Hülle ein und bildet eine Eiweißbrücke aus, die die Virushülle mit der äußeren Wirtszellmembran verbindet. An dieser Brücke hängen die umhüllten Viren einzeln oder sogar in Trauben fest und können sich nicht von der Zelle lösen. Die festgebundenen Viren können somit keine weiteren Körperzellen befallen und sich nicht weiter vermehren.

Welche Bedeutung CD317 bei der Eindämmung viraler Infektionen im Menschen hat, war bisher unklar. So war nicht bekannt, in welchen Zellen und Geweben des Körpers der Abwehrstoff gebildet wird. Professor Dr. Keppler und sein Team haben dies nun erstmals umfassend erforscht.

Ergebnisse stellen geplante Behandlungskonzepte in Frage und zeigen neue Anwendungsmöglichkeiten auf

In Zusammenarbeit mit Dr. Felix Lasitschka vom Pathologischen Institut des Universitätsklinikums Heidelberg untersuchten die Wissenschaftler 468 Gewebeproben von 25 verschiedenen menschlichen Organen und wiesen in allen Proben CD317 nach. Dabei kam der Faktor in den verschiedenen Geweben unterschiedlich häufig vor. Er wurde vor allem in solchen Zellen in großer Menge gebildet, die hoch spezialisiert und als Angriffsziel umhüllter Viren bekannt sind, z.B. in der Leber, Lunge und in Blutgefäßen. Die Heidelberger Forscher konnten sozusagen erstmals eine Landkarte erstellen, auf der ersichtlich ist, wo und in welchem Umfang CD317 im Körper vorkommt.

Neue Ergebnisse führen Forscher auch immer auf neue Wege: Bislang wiesen Wissenschaftler CD317 vor allem in bestimmten Immunzellen, den sogenannten B-Zellen, sowie in Krebszellen nach. „Möglicherweise waren frühere Untersuchungsmethoden nicht empfindlich genug, um CD317 zuverlässig nachzuweisen“, erklärt Professor Keppler. Die Annahme, dass der Abwehrstoff vor allem von B-Zellen gebildet wird, lies Wissenschaftler eine Therapiestrategie gegen die Blutkrebserkrankung Multiples Myelom entwickeln. Beim Multiplen Myelom sind B-Zellen bösartig verändert. Die Patienten sollten in therapeutischen Studien mit Antikörpern behandelt werden, die speziell CD317 auf den B-Zellen angreifen. An die Antikörper koppelt man beispielsweise einen Wirkstoff, der die entarteten B-Zellen gezielt vernichtet.

„Diese Strategie der sogenannten CD317-basierten selektiven Immuntherapie des Multiplen Myeloms muss nun überdacht werden“, sagt Professor Keppler, zeigen doch die neuen Heidelberger Ergebnisse, dass CD317 von vielen verschiedenen Körperzellen gebildet wird und nicht nur von B-Zellen. Ein CD317-Antikörper würde demnach auch eine Vielzahl gesunder Körperzellen angreifen.

„In Bezug auf die Wirksamkeit gegen Viren unterstreichen unsere Ergebnisse aber die Bedeutung von CD317“, erläutert Keppler. „In Zukunft wird es darum gehen herauszufinden, welche Viren von CD317 abgewehrt werden, wie wir den Körper dabei unterstützen können und welche spezifischen Gegenmaßnahmen manche Viren entwickelt haben, die wir dann selektiv entkräften können.“

Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/index.php?id=6552
Literatur:
E Erikson, T Adam, S Schmidt, J Lehmann-Koch, B Over, C Goffinet, C Harter,
I Bekeredjian-Ding, S Sertel, F Lasitschka, OT Keppler. In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans. Published online before print. doi: 10.1073/pnas.1101684108 PNAS August 1, 2011
Kontakt:
Prof. Dr. med. Oliver T. Keppler
Department für Infektiologie, Virologie
Universitätsklinikum Heidelberg
Tel.: 06221-56-5007
Email: oliver.keppler@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 10.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 50 Departments, Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.600 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie