Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielversprechender Wirkstoff für Herz-Kreislauf-Patienten

16.07.2014

Bessere Durchblutung, ein niedriger Blutdruck und ein kräftiges Herz – diese vielversprechenden Effekte haben Wissenschaftler der FAU bei einem bisher wenig beachteten Wirkstoff nachweisen können.

Die Entdeckung nährt Hoffnung auf ein neues Medikament für Patienten mit fortgeschrittener Herz-Kreislauf-Schwäche, denn die Substanz verbinde Wirkungen, wie sie sich jeder behandelnde Arzt nur wünschen kann, sagt einer der Studienleiter, Prof. Dr. Peter W. Reeh. Die Ergebnisse ihrer Untersuchungen haben die Forscher jetzt im Fachportal Nature Communications veröffentlicht.

Der verheißungsvolle Wirkstoff ist Nitroxyl, kurz: HNO, das auf chemischem Wege ein Netz feinster Nervenfasern stimuliert, welches den ganzen Körper durchzieht und auch Herz und Blutgefäße umrankt. Diese so genannten Nozizeptoren erweisen den Geweben des Körpers unentbehrliche Dienste. Sie regeln die Durchblutung und die Durchlässigkeit der Blutgefäßwände, steuern die Regeneration und rufen bei Bedarf Abwehrzellen herbei. Außerdem signalisieren sie drohenden und tatsächlichen Schaden und können, wenn kräftig erregt, Schmerz auslösen.

Stärkster bekannter Gefäßerweiterer und Blutdrucksenker

Diese Funktionen werden von Neuropeptiden ausgeübt, kurzlebigen Signalstoffen, die von den Nervenfasern freigesetzt werden, wenn sie gereizt werden. Einer der Signalstoffe, kurz: CGRP, ist der am stärksten und längsten wirkende Gefäßerweiterer und damit Blutdrucksenker, den man kennt. Außerdem wirkt CGRP am Herzen und steigert seine Schlagkraft und Durchblutung.

„Das sind überaus wünschenswerte Eigenschaften für ein Medikament bei Herz-Kreislauf-Erkrankungen. Doch als Arzneistoffe sind Peptide wie CGRP ungeeignet, weil sie immer gespritzt werden müssten und schnell abgebaut werden“, erläutert Professor Reeh. Doch wie wäre es, wenn man die unzähligen Nervenfasern, die ohnehin ständig kleine Mengen CGRP abgeben, dazu bringen könnte, mehr davon freizusetzen? Natürlich ohne Schmerz zu erzeugen. Dieser Frage ist das FAU-Forscherteam weiter nachgegangen.

Wie viel von dem durchblutungsfördernden CGRP freigesetzt wird, steuert ein Rezeptor namens TRPA1. Das ist ein universeller chemischer Sensor, der auf zahllose körpereigene und fremde Stoffe anspricht, darunter viele aus Gewürzpflanzen wie Knoblauch, Senf, Meerrettich. Rötung und Erwärmung sind eine typische Wirkung, wenn der Sensor stimuliert wird, ebenso wie brennender Schmerz.

TRPA1 reagiert aber auch auf die Kombination von Stickstoffmonoxid (NO) und Schwefelwasserstoff (H2S), wie die Erlanger Forscher jetzt herausgefunden haben. Beide Gase sind eigentlich giftig, im Körper als Signalstoffe jedoch unentbehrlich.

Die Chemiker im Team konnten mit Hilfe eines neuen Fluoreszenzfarbstoffes und spezieller elektrochemischer Messungen beobachten, dass beide Substanzen miteinander reagieren und dabei Nitroxyl (HNO) entsteht. Über komplexe chemische Reaktionen aktiviert der Stoff den TRPA1-Sensor und entfaltet seine Wirkung auf das Herz-Kreislauf-System.

Besonders wirksam bei Entzündungen, Diabetes oder Infarkt

Der große Vorteil: Als Medikament verabreicht würde Nitroxyl im ganzen Körper zur Wirkung kommen, im Gehirn, in Nerven, im Herzen, im Darm und in den Hirnhäuten – dort trägt übermäßig freigesetztes CGRP allerdings auch zu Kopfschmerz bei Migräne bei. Besonders wirksam dürfte HNO sein, wenn sich Gewebe in oxidativem Stress befinden wie bei Entzündung, Diabetes oder nach Infarkt.

Noch existiert kein Präparat, das gleichmäßig über längere Zeit HNO freisetzt. Allerdings gibt es Medikamente, die NO freisetzen, und an solchen, die H2S liefern, wird gearbeitet. Die Erlanger Forschergruppe nährt mit ihrer Publikation Hoffnung auf solche Arzneimittel, zeigt aber gleichzeitig Grenzen auf: „Nitroxyl kann auch Entzündung und Schmerz fördern. Wie immer wird es eine Frage der Dosierung sein“, betont Professor Reeh.

Die Untersuchung wurde gefördert im Rahmen des Projekts „Medicinal Redox Inorganic Chemistry“ der Emerging Fields Initiative (EFI) der FAU, Sprecherin Prof. Dr Ivana Ivanovic-Burmazovic, Lehrstuhl für Bioanorganische Chemie. In dem Projekt arbeiten medizinische Institute und Kliniken mit dem Department Chemie der FAU sowie Partnern im Ausland zusammen.

Weitere Informationen:
Prof. Dr. Peter W. Reeh
Tel.: 09131/85-22228
reeh@physiologie1.uni-erlangen.de

doi:10.1038/ncomms5381
Mirjam Eberhardt, Maria Dux, Barbara Namer,Jan Miljkovic, Nada Cordasic, Christine Will, Tatjana I. Kichko, Jeanne de la Roche, Michael Fischer, Sebastián A. Suárez, Damian Bikiel, Karola Dorsch, Andreas Leffler, Alexandru Babes, Angelika Lampert, Jochen K. Lennerz, Johannes Jacobi, Marcelo A. Martí, Fabio Doctorovich, Edward D. Högestätt, Peter M. Zygmunt, Ivana Ivanovic-Burmazovic, Karl Messlinger, Peter Reeh & Milos R. Filipovic

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops