Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das vielgestaltige Verteidigungssystem der Bakterien

30.04.2013
HZI-Forscher entdecken zahlreiche Varianten mikrobieller Abwehr-Gene, die sich auch für die Biotechnologie nutzen lassen

Auch Bakterien haben eine Art „Immunsystem“, mit dem sie unerwünschte Eindringlinge – in ihrem Fall Viren – abwehren können. Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig konnten jetzt zeigen: Dieses Abwehr-System ist vielgestaltiger als gedacht und existiert in zahlreichen Varianten. Die vielen neu entdeckten Spielarten so genannter „CRISPR-Cas“-Gene wollen sie für den gezielteren Umbau von Erbinformation nutzen, unter anderem für medizinische Zwecke.


Streptococcus pyogenes, hier beim Eindringen in eine Zelle, ist eines des Bakterien, dessen CRISPR-Cas-System die Braunschweiger Wissenschaftler untersucht haben.
© HZI / Rohde

Das Immunsystem des Menschen dient dem Schutz vor eindringenden Bakterien, Viren und anderen Krankheitserregern. Um diese Aufgabe erfüllen zu können, hat es sich zu einem hoch komplexen Ensemble von Zellen, Botenstoffen und Antikörper-Molekülen entwickelt, das verschiedenartigste Erreger erkennt, abwehrt und Informationen über sie speichert.

Auch die Bakterien selbst werden durch Erreger bedroht: Bestimmte Viren, die Bakteriophagen (zu Deutsch „Bakterienfresser“), haben sich darauf spezialisiert, in Bakterien-Zellen einzudringen und sich in ihnen zu vermehren. Um diese unerwünschten Gäste los zu werden, bedienen sich viele Bakterien-Arten eines Arsenals von Molekülen, das nach ähnlichen Prinzipien arbeitet wie ein Immunsystem.

Das Enzym Cas erkennt DNA-Moleküle mit fremder Erbinformation, die beispielsweise von einem Bakteriophagen stammt, und spaltet sie an einer bestimmten Stelle. Um sie erkennen zu können, benötigt es eine molekulare Abschrift von besonders charakteristischen Abschnitten der Fremd-DNA. Diese Abschrift, eine Art „molekularer Steckbrief“ von Bakteriophagen-DNA und anderem fremdem Gen-Material, liegt in Gestalt eines RNA-Moleküls vor, eines wichtigen Zellbausteins, der unter anderem als Zwischenspeicher für Informationen genutzt wird.

Die Vorlage für diesen Steckbrief speichert das Bakterium in seinen eigenen Genen, und zwar in Regionen, die Wissenschaftler als CRISPR bezeichnen (englisch: „Clustered regularly interspaced small palindromic repeats“, etwa: „Regelmäßige Anordnung von kleinen, symmetrischen Wiederholungen“ in der Abfolge der DNA-Bausteine). Gemeinsam bilden das Enzym und die Steckbrief-RNA das CRISPR-Cas-System.

Die Arbeitsgruppe von Prof. Emmanuelle Charpentier hat jetzt die Genome einiger Hundert Bakterien-Arten nach CRISPR-Cas-Genen durchsucht – und ist fündig geworden. „Wir haben neue CRISPR-Cas-Gene in mehreren Bakterien-Arten gefunden“, sagt Charpentier, die am HZI forscht und an der Medizinischen Hochschule Hannover (MHH) lehrt. Darunter finden sich gefürchtete Krankheitskeime wie Streptococcus pyogenes und der Hirnhautentzündungs-Erreger Neisseria meningitidis. „Einige dieser Gene haben wir am Computer

identifiziert, indem wir bekannte DNA-Sequenzen der betreffenden Bakterien untersuchten.“ Charpentiers Resümee: „Das CRISPR-System ist unter den Bakterien nicht nur sehr verbreitet, es kommt auch in unglaublich vielen verschiedenen Varianten vor.“

Diese Varianten zu kennen ist nicht nur von akademischem Interesse, sondern kann insbesondere für die Gentechnik von enormem Nutzen sein: „Das CRISPR-Cas-System hat die Eigenschaft, dass es DNA an sehr spezifischen Stellen schneidet“, erklärt Charpentier. „Das Cas-Enzym kann bereits so modifiziert werden, dass es nicht nur in Bakterien tätig wird, sondern auch in tierischen und menschlichen Zellkulturen.“ Wird ein solches an die menschliche Zelle angepasstes Enzym im Zellkultur-Experiment gezielt mit neuen RNA-„Steckbriefen“ ausgestattet, dann schneidet es auch das Genom der Zelle an genau definierten Stellen. „Wenn man dann bestimmte Reparatur-Mechanismen der Zelle nutzt, die DNA-Stränge flicken und deren lose Enden verknüpfen können, dann kann man gezielt neue Gen-Abschnitte in die Zell-DNA einführen.“

Ein solches Verfahren eröffnet beträchtliche Möglichkeiten für neue Therapieformen. „Ich bin sicher, dass die CRISPR-Cas-Technologie ein gewaltiges Potenzial hat“, sagt Charpentier, „insbesondere für medizinische Anwendungen, etwa in der Gentherapie.“

Originalpublikation:
Krzysztof Chylinski, Anaïs Le Rhun, Emmanuelle Charpentier
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
RNA Biology, 2013

Dr. Jan Grabowski | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise