Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viele "Gesichter", gleiche Gene: Neue Erkenntnisse zur Selbstverteidigung von Wasserflöhen

10.12.2013
Wasserflöhe bilden gegen Fressfeinde Abwehrstrukturen aus und können daher, bei gleicher genetischer Ausstattung, unterschiedliche "Gesichter" haben.

Im Fachjournal "BMC Biology" zeichnen Prof. Dr. Christian Laforsch, Universität Bayreuth, und Dipl.-Biol. Quirin Herzog, LMU München, ein differenziertes Bild dieser vielfältigen Formen der Verteidigung, die sie beim Bärtigen Wasserfloh (Daphnia barbata) entdeckt haben. Zugleich entwickeln sie ein neues evolutionsbiologisches Konzept, das diese Vielfalt systematisch beschreibt und erklären hilft.


Drei "Gesichter" des Bärtigen Wasserflohs (Daphnia barbata). Links: unbehelligt von Fressfeinden; Mitte: gewappnet gegen den Urzeitkrebs Triops; Rechts: geschützt vor der Wasserwanze Notonecta.

Bilder: Dipl.-Biol. Quirin Herzog; mit Autorenhinweis zur Veröffentlichung frei.

Flexible Anpassungen an Fressfeinde

Lebewesen können trotz gleicher genetischer Ausstattung ein völlig verschiedenes Aussehen annehmen. Wasserflöhe sind dafür ein besonders eindrucksvolles Beispiel. Es handelt sich dabei, entgegen dem Namen, nicht um "Flöhe", sondern um Süßwasser-Krebstiere, die als Plankton in stehenden Gewässern auf der ganzen Welt zuhause sind. Sobald sie ihre Fressfeinde aufgrund chemischer Botenstoffe identifiziert haben, ändern sie ihr Aussehen. Sie rüsten sich beispielsweise durch Helme, Stacheln oder sogenannte Nackenzähne, um die drohenden Gefahren abzuwehren. Diese flexiblen körperlichen Anpassungen an Fressfeinde, die in der Biologie als "induzierbare Verteidigungen" bezeichnet werden, sind vor allem beim Bärtigen Wasserfloh (Daphnia barbata) sehr vielfältig ausgeprägt.

Diese Vielfalt haben Prof. Dr. Christian Laforsch, der an der Universität Bayreuth den Lehrstuhl für Tierökologie innehat, und sein Doktorand Dipl.-Biol. Quirin Herzog an der LMU München genauer untersucht. Im Fachjournal "BMC Biology" stellen sie jetzt ihre Forschungsergebnisse vor. Wie sie in Experimenten entdeckt haben, bildet der Bärtige Wasserfloh einen langgezogenen Helm und einen langen Schwanzstachel, um sich gegen die auf dem Rücken schwimmende Wasserwanze Notonecta zu schützen; gegen den Urzeitkrebs Triops setzt er sich jedoch mit einem nach hinten gekrümmten Helm und einem krummen Schwanzstachel zur Wehr. Ohne die gefährliche Nähe zu diesen Fressfeinden würden sich derart differenzierte Abwehrinstrumente beim Bärtigen Wasserfloh niemals herausbilden.

"Wir haben es hier mit besonders auffälligen Beispielen für sogenannte phänotypische Plastizität zu tun", erklärt Quirin Herzog. "Nicht nur bei Wasserflöhen, sondern bei praktisch jedem Lebewesen, auch beim Menschen, ist dieses Phänomen vielfach anzutreffen – etwa wenn die Haut unter dem Einfluss des Sonnenlichts braun wird oder wenn der Körper infolge von Impfungen gegen bestimmte Viren immun wird."

Spezifische Abwehrmechanismen: Eine optimale Anpassung an die Umwelt?

Bieten die Abwehrmechanismen, mit denen sich die Wasserflöhe gegen unterschiedliche Fressfeinde wehren, jeweils den wirkungsvollsten Schutz? "Natürliche Selektion bedingt, dass sich Lebewesen optimal an ihre Umwelt anpassen", erklärt Prof. Christian Laforsch. "Man sollte also annehmen, dass, wenn ein Organismus spezifische Abwehrmechanismen besitzt, diese jeweils die beste Verteidigung darstellen. Wir erwarteten daher, dass der krumme Helm, mit dem sich der Bärtige Wasserfloh gegen die Urzeitkrebse verteidigt, ihn besser vor diesen Fressfeinden schützt als der langgestreckte Helm, der gegen die Wasserwanzen gebildet wird."

Umso überraschter waren die Wissenschaftler, als sie diese Hypothese im Labor überprüften. Zwar stellte sich heraus, dass der langgezogene Helm, verglichen mit dem krummen Helm, den Bärtigen Wasserfloh besser gegen die Wasserwanzen schützt. Doch wenn er sich gegen die Urzeitkrebse wehren muss, ist dieser Helm scheinbar ebenso geeignet – nicht schlechter als der nach hinten gekrümmte Helm.

Wie ist dieser Befund damit zu vereinbaren, dass Wasserflöhe optimal an ihre natürliche Umwelt angepasst sind? Ist im Verlauf der Evolution eine Vielfalt von Abwehrmechanismen entstanden, die für einen wirkungsvollen Schutz gegen natürliche Feinde nicht zwingend erforderlich ist? Dies ist eher unwahrscheinlich. Denn eine neue spezifische Verteidigung hätte sich, ohne einen besonderen Vorteil zu haben, nicht durchsetzen können; sie wäre gegebenenfalls durch eine bessere Verteidigung verdrängt worden und könnte neben dieser nicht existieren. Daher sehen die beiden Autoren der Studie zwei Möglichkeiten: Entweder es existiert ein noch verborgener größerer Nutzen der spezifischen Verteidigung gegen die Urzeitkrebse; oder diese Verteidigung besitzt denselben Nutzen wie die Verteidigung gegen die Wasserwanzen, verursacht aber dem Wasserfloh geringere Kosten und ist damit effizienter.

Um derartigen Zusammenhängen auf den Grund zu gehen, haben Prof. Christian Laforsch und Quirin Herzog ein neues Konzept entwickelt, das sie in "BMC Biology" erstmals der Fachwelt vorstellen. Das Konzept unterstützt das Verständnis biologischer Systeme, in denen eine Tierart verschiedenen Arten von Feinden ausgesetzt ist. Es hilft dabei, solche Systeme zu kategorisieren und zu vergleichen – und soll letztlich auch das evolutionsbiologische Rätsel lösen können, weshalb der Bärtige Wasserfloh bei gleicher genetischer Ausstattung so viele verschiedene Gesichter hat.

Hintergrund:

Wasserflöhe sind heute für die wissenschaftliche Forschung vor allem aus zwei Gründen interessant: Zum einen pflanzen sie sich hauptsächlich durch "Jungfernzeugung" fort, also eine natürliche Art des Klonens, bei dem Weibchen sich ohne Männchen fortpflanzen und wieder Weibchen hervorbringen. Zum anderen reagieren sie, wie nicht zuletzt an den "induzierten Verteidigungen" gegen Fressfeinde deutlich wird, höchst sensitiv auf Veränderungen in ihrer Umwelt. Daher werden Wasserflöhe heute als Modellorganismen in der Ökologie, der Evolutionsbiologie, der (Öko-)Toxikologie und sogar in der biomedizinischen Forschung verwendet.

Veröffentlichung:

Quirin Herzog and Christian Laforsch, Modality matters for the expression of inducible defenses: introducing a concept of predator modality, in: BMC Biology 2013, 11:113,

DOI: 10.1186/1741-7007-11-113

Ansprechpartner:

Prof. Dr. Christian Laforsch
Lehrstuhl für Tierökologie I
Universität Bayreuth
Universitätsstraße 30
95447 Bayreuth
Telefon: +49 (0) 921 / 55-2650
E-Mail: christian.laforsch@uni-bayreuth.de
Dipl.-Biol. Quirin Herzog
LMU München / Department Biology II
Evolutionsökologie
Großhaderner Str. 2
82152 Planegg-Martinsried
Telefon: +49 (0)89 / 2180 74-210
E-Mail: q.herzog@biologie.uni-muenchen.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit