Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Versuch und Irrtum: Gehirn lernt mit Fehlern

09.02.2011
In jedem Gehirn werden im Laufe seiner Entwicklung zahlreiche Nervenverbindungen geknüpft, die sich als falsch erweisen und anschliessend wieder gekappt werden müssen. Die Ausbildung von neuronalen Netzwerken ist also nicht immer zielgerichtet und fehlerfrei.

Das konnte die Forschergruppe von Prof. Peter Scheiffele am Biozentrum der Universität Basel jetzt am Beispiel sogenannter Moosfaser-Nervenzellen nachweisen. Verantwortlich für die Fehlerbehebung ist ein Protein, das Forscher ursprünglich im Zusammenhang mit Prozessen bei der Knochenbildung kannten. Die Forschungsergebnisse sind in der aktuellen Ausgabe des US-Journals PLoS Biology veröffentlicht.


Verknüpfung zwischen Moosfaser-Nervenzellen (grün) und Purkinje-Nervenzellen (rot) während der Hirnreifung.


Zwei Wochen später im gereiften Stadium: Verknüpfung zwischen Moosfaser-Nervenzellen (grün) und Purkinje-Nervenzellen (rot) sind eliminiert.
(Bilder: Scheiffele)

Die Erforschung der Gehirnentwicklung sowie seiner Mechanismen in der Ausbildung von neuronalen Netzwerken spielen eine entscheidende Rolle im Verständnis sowie der Behandlung von neuronalen Krankheiten wie Autismus, Schizophrenie oder Epilepsie. „Wenn falsche Verknüpfungen zwischen Nervenzellen im Gehirn nicht anschliessend wieder eliminiert werden, kann dies zu erheblichen Störungen im Gehirn führen. Auch Autismus könnte mit dieser Form der ausbleibenden Fehlerkorrektur in Verbindung stehen", so Scheiffele.

Jede Nervenzelle muss sich im Laufe der Gehirnentwicklung mit bestimmten Partner-Nervenzellen verknüpfen, um ein leistungsfähiges Nervennetzwerk auszubilden. Moosfaser-Nervenzellen sind eine Gruppe von Nervenzellen des Kleinhirns, deren Ziel es ist, eine synaptische Verbindung zu sogenannten Körner-Nervenzellen herzustellen. Wie die Forscher jetzt zeigen konnten, verbinden sich im Zuge der Gehirnentwicklung diese Moosfaser-Nervenzellen oftmals mit sogenannten Purkinje-Nervenzellen. Diese Verbindungen sind jedoch in einem entwickelten Gehirn nicht vorgesehen und werden innerhalb einer Woche wieder getrennt.

Knochenprotein macht Fehlerkorrektur im Gehirn

Zuständig für die Fehlerbehebung ist das Protein BMP4, das die Auflösung der zuvor geschaffenen Verbindung einleitet. Ursprünglich wurde BMP4 mit der Spezialisierung von Zellen bei der Knochenbildung in Zusammenhang gebracht. Dass das Protein auch für die Stabilität bzw. den Abbruch von neuronalen Verbindungen verantwortlich ist, wusste man bisher nicht.

Zeigen konnte die Forschergruppe des Biozentrums ihre Ergebnisse am Beispiel von Mäusen. Mit Hilfe eines fluoreszierenden Proteins können Nervenverbindungen angefärbt und im Lichtmikroskop sichtbar gemacht werden. Veränderungen in der neuronalen Verknüpfung von Nervenzellen lassen sich so im Gehirn nachverfolgen. Dabei konnten die Forscher beobachten, wie Nervenverbindungen zwischen Moosfaserzellen und Purkinjezellen zunächst aufgebaut, durch das Protein BMP4 jedoch wieder eliminiert werden. „Die Ereignisse lassen sich auch auf die Entwicklung des menschlichen Gehirns übertragen und könnten für die weitere Hirnforschung eine wichtige Rolle spielen“, so Scheiffele.

Fehler sind Programm

Das Gehirn ist ein hochkomplexes Vernetzungssystem, in dem Tausende unterschiedlicher Nervenzellen neuronale Verbindungen, sogenannte synaptische Verknüpfungen, mit anderen Nervenzellen eingehen. Dabei bilden die Nervenzellen sogenannte Axone, faserförmige Fortsätze, die in verschiedene Gehirnregionen hineinwachsen, um dort Verknüpfungen zu anderen Nervenzellen herzustellen.

Das Gehirn unterliegt im Laufe eines Lebens drastischen Veränderungen. Während die neuronalen Verknüpfungen im Gehirn eines Neugeborenen noch relativ unspezifisch sind, steigert sich die Selektivität der neuronalen Verbindungen fortlaufend. Kurz: Das Gehirn lernt. Das Aufkommen dieser fehlerhaften transienten Verbindungen könnte Teil dieses Lernprozesses sein. Die Frage, welchen Vorteil diese nur für kurze Zeit bestehenden Verbindungen zwischen Nervenzellen für die Gehirnentwicklung bedeutet, wird in der weiteren Forschungsarbeit Scheiffeles nun im Vordergrund stehen.

Originalbeitrag
Anna Kalinovsky Fatiha Boukhtouche, Richard Blazeski, Caroline Bornmann, Noboru Suzuki, Carol A. Mason, Peter Scheiffele
Development of Axon-Target Specificity of Ponto-Cerebellar Afferents
PLoS Biology, published 08 Feb 2011, 10.1371/journal.pbio.1001013
Weitere Auskünfte
Prof. Dr. Peter Scheiffele, Departement Biozentrum der Universität Basel, Abteilung Neurobiologie, Klingelbergstrasse 50/70, 4056 Basel, Tel. +41 61 267 21 94, E-Mail: peter.scheiffele@unibas.ch
Heike Sacher, Public Relations, Departement Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel,

Tel. +41 61 267 14 49, E-Mail heike.sacher@unibas.ch

Hans Syfrig Fongione | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie