Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungewöhnlicher Lichtrezeptor behebt Erbgutschäden

19.11.2015

Marburger Biologen entdeckten Frühform eines lichtabhängigen Enzyms zur DNA-Reparatur

Biologinnen und Biologen aus Marburg, Salamanca und Sevilla haben Licht in die Evolution der DNA-Reparatur gebracht. Das Team um Professor Dr. Alfred Batschauer von der Philipps-Universität fand bei der genetischen Untersuchung von Pilzen der Unterabteilung Mucoromycotina heraus, dass diese über ein lichtabhängiges Enzym verfügen, welches anders als bislang angenommen nicht nur einzelsträngige, sondern auch doppelsträngige DNA reparieren kann.


Sporangiophore (Fruchtkörper) des Pilzes Phycomyces blakesleeanus. Das DASH-Cryptochrom dieses Pilzes wurde in der besprochenen PNAS-Publikation untersucht. Sporangiophore sind Einzelzellen, die aus dem Myzel herauswachsen und mehrere Zentimeter lang werden können. Sie reagieren auf Umweltfaktoren wie Licht, Schwerkraft und Wind und dienen der Verbreitung der Sporen. Bild mit freundlicher Genehmigung von M. del Mar Gil-Sáchez.


Phylogenetischer Stammbaum der Cryptochrom/Photolyase-Enzymfamilie mit acht Unterfamilien. Mitglieder der untersuchten Mucoromycotina-Pilze sind mit einem Stern gekennzeichnet.

Abbildung aus Tagua et al., 2015

Die deutschen und spanischen Wissenschaftlerinnen und Wissenschaftler berichten über ihre Ergebnisse in einer Online-Vorabveröffentlichung des renommierten Wissenschaftsmagazins „Proceedings of the National Academy of Sciences of the United States of America“ (PNAS).

Damit Organismen in ihrer Umwelt bestehen können, benötigen sie einen wirksamen Mechanismus, der Schäden an der Erbsubstanz DNA behebt – zum Beispiel, wenn sie durch ultraviolettes Licht geschädigt wird. Ohne solche Reparaturmechanismen führen diese Schäden zu Mutationen, Krebs oder Zelltod.

Die Forschergruppe um Batschauer untersuchte den DNA-Reparaturmechanismus in Pilzen der Unterabteilung Mucoromycotina, zu der auch der Schimmelpilz Phycomyces gehört. Das Team fand heraus, dass diese Pilze sogenannte DASH-Cryptochrome für die DNA-Reparatur nutzen.

DASH steht für die Arten (Drosophila, Arabidopsis, Synechocystis, Homo sapiens), in denen diese oder verwandte Gene zunächst gefunden wurden. Sie existieren aber auch in anderen Organismen, beispielsweise in Pilzen. Für die lichtabhängige Reparatur von UV-Schäden ist in anderen Organismen das Enzym Photolyase zuständig.

Nicht so bei der untersuchten Gruppe von Pilzen. „Im Gegensatz zu anderen Organismengruppen fanden wir in den Genomen dieser Pilze ausschließlich DASH-Cryptochrome, keine Photolyase. Das war überraschend, weil bekannt war, dass diese Pilze Licht für die Reparatur von UV-Schäden nutzen. Wir konnten zeigen, dass die DASH-Cryptochrome in den Pilzen die evolutionäre Urform der DNA-Reparaturaktivität behalten haben“, erklärt Batschauer, korrespondierender Autor der Veröffentlichung.

DASH-Cryptochrome galten bislang als Photorezeptoren mit eingeschränkter DNA-Reparaturaktivität. Das Autorenteam war deshalb der Frage nachgegangen, ob DASH-Cryptochrome des Schimmelpilzes auch Schäden in doppelsträngiger DNA reparieren können. In der nun publizierten Arbeit wird dies bestätigt.

„Unsere Befunde liefern einen wichtigen Beitrag zum Verständnis der Evolution der Cryptochrome und Photolyase, die zu einer Proteinfamilie gehören. „Nun wollen wir die molekularen Grundlagen der funktionellen Unterschiede von DASH-Cryptochromen aus verschiedenen Organismengruppen verstehen“, berichtet Batschauer über die nächsten Schritte seiner Forschung.

Die publizierten Erkenntnisse bauen auf früheren Entdeckungen Batschauers auf. Er hatte 1993 zeitgleich mit amerikanischen Wissenschaftlern die Cryptochrome als eine neue Gruppe von Lichtrezeptoren in Pflanzen entdeckt. Sie haben strukturelle Ähnlichkeit mit dem lichtabhängigen Enzym Photolyase.

Cryptochrome von Pflanzen und vielen anderen Organismen erkennen den Blaulichtanteil des Sonnenlichts, sie sind außerdem Bestandteil der biologischen Uhr von Menschen und anderen Säugetieren. Nach der Entdeckung der Cryptochrome forschte Batschauer zeitweilig an diesen Photorezeptoren gemeinsam mit Prof. Dr. Aziz Sancar, der 2015 den Chemie-Nobelpreis für seine Forschung zu DNA-Reparaturmechanismen erhielt.

Professor Dr. Alfred Batschauer leitet eine Arbeitsgruppe für Pflanzenphysiologie und Photobiologie an der Philipps-Universität Marburg. Die Forschungsarbeit, die der aktuellen Publikation zugrunde liegt, wurde mit Mitteln des von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereichs 987 „Mikrobielle Diversität in umweltabhängiger Signalantwort“ ermöglicht.

Originalpublikation: Victor G. Tagua, Marcell Pausch & al.: Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution, PNAS 2015

Weitere Informationen:

http://www.uni-marburg.de/fb17/fachgebiete/pflanzenphysio/pflanzphysII/index_htm... - Homepage des Fachgebiets Molekulare Pflanzenphysiologie und Photobiologie an der Philipps-Universität Marburg

Andrea Ruppel | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-marburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie