Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungewöhnliche Proteinstrukturen machen Bakterien hitzebeständig

06.03.2013
Bei Dauertemperaturen von mehr als 80 Grad Celsius haben die meisten auf der Erde lebenden Organismen keine Überlebenschance.

Thermotoga maritima jedoch ist ein Bakterium, das sich dem Wachstum in heißen Quellen und in vulkanischem Gestein sehr gut angepasst hat. Damit Bakterien unter diesen Bedingungen leben können, müssen ihre Proteine sehr temperaturstabil sein.


Links: Das Protein NusG zeigt in Bakterien wie Escherichia coli keine Wechselwirkung zwischen der N-terminalen Domäne (blau) und der C-terminalen Domäne (rot). Die Domänen sind relativ zueinander frei beweglich und können so an weitere Proteine binden. // Mitte: Das Bakterium Escherichia coli besitzt auch ein dem NusG ähnliches Protein, RfaH. Hier liegen die Domänen eng beieinander, sie werden erst durch die Bindung eines spezifischen DNA Stücks geöffnet, wobei die C-terminale Domäne komplett ihre Struktur ändert. // Rechts: Im Bakterium Thermotoga maritima trägt die Wechselwirkung zwischen der N-terminalen Domäne (blau) und der C-terminalen Domäne (rot) erheblich zur Stabilität des Proteins bei. Zusätzlich existiert eine weitere strukturelle Einheit (gelb), deren Funktion bisher unbekannt ist.

Grafik: Dr. Kristian Schweimer, Lehrstuhl Biopolymere, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Die erhöhte Stabilität des Proteins NusG aus Thermotoga maritima zum Beispiel kann durch das ungewöhnliche Wechselspiel einzelner Strukturelemente erklärt werden. Darüber berichtet ein Forschungsteam unter der Leitung von Prof. Dr. Paul Rösch, Lehrstuhl Biopolymere der Universität Bayreuth, in der Zeitschrift "Structure".

Funktionsuntüchtig, aber stabil:
NusG-Moleküle im geschlossenen Zustand

Proteine vom Typ des bakteriellen NusG übernehmen, soweit bekannt, in vielen Organismen lebenswichtige Steuerungsfunktionen. NusG-Proteine sind entscheidend an der Genexpression beteiligt, insbesondere am Vorgang der Transkription, bei dem die in der DNA enthaltene Erbinformation in RNA umgeschrieben wird. Hier hat NusG die Aufgabe, verschiedene weitere Proteine mit dem Enzym RNA-Polymerase zu verknüpfen. Oft besteht NusG aus zwei klar unterscheidbaren räumlich strukturierten Einheiten, der amino- und der carboxyterminalen Domäne. Wie bei früheren Forschungsarbeiten beobachtet werden konnte, treten in vielen Bakterienarten diese Domänen nicht miteinander in Kontakt. Dadurch ist gewährleistet, dass sie sich bei der Erfüllung ihrer spezifischen Funktionen nicht behindern.

Anders verhält es sich jedoch bei der Bakterienart Thermotoga maritima. Wie die Bayreuther Wissenschaftler zusammen mit Kollegen an der Freien Universität Berlin und der Columbia University, New York, festgestellt haben, hat das Protein NusG in diesen Bakterien zumeist eine geschlossene Struktur, das heißt, die zwei Domänen liegen fast immer eng beieinander. Dies hat zur Folge, dass ausgerechnet diejenigen Bereiche, die mit anderen Proteinen wechselwirken können, sich gegenseitig verdecken. In dieser Struktur ist keine der beiden Domänen imstande, an lebenswichtigen Prozessen der Genexpression teilzunehmen. Das Protein NusG macht sich mithin selbst funktionsuntüchtig, ein Zustand, den die Forschung als Autoinhibition bezeichnet. Und doch hat diese Struktur für das Bakterium einen wesentlichen Vorteil: Sie erhöht die Stabilität des Proteins und bewirkt, dass es hohen Temperaturen standhalten kann.

Blitzschnelle Strukturwechsel:
Oszillierende NusG-Moleküle

NusG verharrt aber nicht in dieser geschützten Struktur. Um wenigstens kurzfristig aktiv werden zu können, öffnet sich das Protein. Jetzt haben die beiden Domänen die Bewegungsfreiheit, die sie brauchen, um mit anderen Proteinen in Wechselwirkung zu treten. Mit NMR-spektroskopischen Analysen an der Universität Bayreuth ist es den Forschern gelungen, diesen Strukturwechsel zu beobachten. Ihre Untersuchungen haben zu dem Ergebnis geführt, dass sich jedes NusG-Molekül für den winzigen Zeitraum von 2 Hunderttausendstel Sekunden öffnet. Danach fällt es sofort in den geschlossenen Zustand zurück, in dem es etwa 1 Tausendstel Sekunde lang verbleibt. Da sich dieser Rückfall in die Inaktivität schneller vollzieht als die Öffnung, befinden sich zu jedem beliebigen Zeitpunkt rund 98 Prozent der im Bakterium enthaltenen NusG-Moleküle im geschlossenen Zustand. Nur die restlichen 2 Prozent sind geöffnet.
"Das ständige Oszillieren zwischen zwei verschiedenen Strukturen ist ein äußerst ungewöhnlicher Kunstgriff der Natur, durch den gewährleistet ist, dass die NusG-Moleküle einerseits sehr hohen Temperaturen standhalten, andererseits aber an der Genexpression und an weiteren zellulären Prozessen mitwirken können", erklärt Dr. Kristian Schweimer vom Lehrstuhl Biopolymere der Universität Bayreuth. "Ein solcher blitzschneller Strukturwechsel ist bei ähnlichen Proteinen der bei Raumtemperatur lebenden Bakterien bisher nicht beobachtet worden."

NusG-Proteine aus hitzebeständigen Bakterien:
Untätig in normalen Bakterien

Was geschieht, wenn man E.coli-Bakterien, die am besten bei Körpertemperatur leben, diese zwischen einer offenen und einer geschlossenen Struktur oszillierenden NusG-Proteine unterschiebt? Wie die Bayreuther Wissenschaftler herausgefunden haben, verhalten sich die eingepflanzten Proteine völlig passiv. „Die Neigung zur Autoinhibition ist offenbar die Ursache dafür, dass die NusG-Proteine in gewöhnlichen Bakterien wie E.coli nicht durch NusG-Proteine aus den hitzebeständigen Bakterien ersetzt werden können“, meint Johanna Drögemüller M.Sc., die Erstautorin des Beitrags in Structure.
Eine weitere strukturelle Besonderheit

Die kristallographischen Analysen in Berlin haben gezeigt, dass das Protein NusG in den hitzebeständigen Bakterien der Spezies Thermotoga maritima noch eine andere strukturelle Besonderheit aufweist: Die aminoterminale Domäne enthält ihrerseits eine strukturelle Untereinheit. Welche Funktionen dieses Strukturelement hat, ist bisher allerdings noch ungeklärt.

Veröffentlichung:

Drögemüller et al.
An Autoinhibited State in the Structure of Thermotoga maritima NusG.
Structure 2013, DOI: 10.1016/j.str.2012.12.015

Ansprechpartner:

Dr. Kristian Schweimer
Universität Bayreuth
Lehrstuhl für Biopolymere
D-95440 Bayreuth
Telefon: +49 (0) 921 55 3543
E-Mail: kristian.schweimer@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops