Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungewöhnliche Proteinstrukturen machen Bakterien hitzebeständig

06.03.2013
Bei Dauertemperaturen von mehr als 80 Grad Celsius haben die meisten auf der Erde lebenden Organismen keine Überlebenschance.

Thermotoga maritima jedoch ist ein Bakterium, das sich dem Wachstum in heißen Quellen und in vulkanischem Gestein sehr gut angepasst hat. Damit Bakterien unter diesen Bedingungen leben können, müssen ihre Proteine sehr temperaturstabil sein.


Links: Das Protein NusG zeigt in Bakterien wie Escherichia coli keine Wechselwirkung zwischen der N-terminalen Domäne (blau) und der C-terminalen Domäne (rot). Die Domänen sind relativ zueinander frei beweglich und können so an weitere Proteine binden. // Mitte: Das Bakterium Escherichia coli besitzt auch ein dem NusG ähnliches Protein, RfaH. Hier liegen die Domänen eng beieinander, sie werden erst durch die Bindung eines spezifischen DNA Stücks geöffnet, wobei die C-terminale Domäne komplett ihre Struktur ändert. // Rechts: Im Bakterium Thermotoga maritima trägt die Wechselwirkung zwischen der N-terminalen Domäne (blau) und der C-terminalen Domäne (rot) erheblich zur Stabilität des Proteins bei. Zusätzlich existiert eine weitere strukturelle Einheit (gelb), deren Funktion bisher unbekannt ist.

Grafik: Dr. Kristian Schweimer, Lehrstuhl Biopolymere, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Die erhöhte Stabilität des Proteins NusG aus Thermotoga maritima zum Beispiel kann durch das ungewöhnliche Wechselspiel einzelner Strukturelemente erklärt werden. Darüber berichtet ein Forschungsteam unter der Leitung von Prof. Dr. Paul Rösch, Lehrstuhl Biopolymere der Universität Bayreuth, in der Zeitschrift "Structure".

Funktionsuntüchtig, aber stabil:
NusG-Moleküle im geschlossenen Zustand

Proteine vom Typ des bakteriellen NusG übernehmen, soweit bekannt, in vielen Organismen lebenswichtige Steuerungsfunktionen. NusG-Proteine sind entscheidend an der Genexpression beteiligt, insbesondere am Vorgang der Transkription, bei dem die in der DNA enthaltene Erbinformation in RNA umgeschrieben wird. Hier hat NusG die Aufgabe, verschiedene weitere Proteine mit dem Enzym RNA-Polymerase zu verknüpfen. Oft besteht NusG aus zwei klar unterscheidbaren räumlich strukturierten Einheiten, der amino- und der carboxyterminalen Domäne. Wie bei früheren Forschungsarbeiten beobachtet werden konnte, treten in vielen Bakterienarten diese Domänen nicht miteinander in Kontakt. Dadurch ist gewährleistet, dass sie sich bei der Erfüllung ihrer spezifischen Funktionen nicht behindern.

Anders verhält es sich jedoch bei der Bakterienart Thermotoga maritima. Wie die Bayreuther Wissenschaftler zusammen mit Kollegen an der Freien Universität Berlin und der Columbia University, New York, festgestellt haben, hat das Protein NusG in diesen Bakterien zumeist eine geschlossene Struktur, das heißt, die zwei Domänen liegen fast immer eng beieinander. Dies hat zur Folge, dass ausgerechnet diejenigen Bereiche, die mit anderen Proteinen wechselwirken können, sich gegenseitig verdecken. In dieser Struktur ist keine der beiden Domänen imstande, an lebenswichtigen Prozessen der Genexpression teilzunehmen. Das Protein NusG macht sich mithin selbst funktionsuntüchtig, ein Zustand, den die Forschung als Autoinhibition bezeichnet. Und doch hat diese Struktur für das Bakterium einen wesentlichen Vorteil: Sie erhöht die Stabilität des Proteins und bewirkt, dass es hohen Temperaturen standhalten kann.

Blitzschnelle Strukturwechsel:
Oszillierende NusG-Moleküle

NusG verharrt aber nicht in dieser geschützten Struktur. Um wenigstens kurzfristig aktiv werden zu können, öffnet sich das Protein. Jetzt haben die beiden Domänen die Bewegungsfreiheit, die sie brauchen, um mit anderen Proteinen in Wechselwirkung zu treten. Mit NMR-spektroskopischen Analysen an der Universität Bayreuth ist es den Forschern gelungen, diesen Strukturwechsel zu beobachten. Ihre Untersuchungen haben zu dem Ergebnis geführt, dass sich jedes NusG-Molekül für den winzigen Zeitraum von 2 Hunderttausendstel Sekunden öffnet. Danach fällt es sofort in den geschlossenen Zustand zurück, in dem es etwa 1 Tausendstel Sekunde lang verbleibt. Da sich dieser Rückfall in die Inaktivität schneller vollzieht als die Öffnung, befinden sich zu jedem beliebigen Zeitpunkt rund 98 Prozent der im Bakterium enthaltenen NusG-Moleküle im geschlossenen Zustand. Nur die restlichen 2 Prozent sind geöffnet.
"Das ständige Oszillieren zwischen zwei verschiedenen Strukturen ist ein äußerst ungewöhnlicher Kunstgriff der Natur, durch den gewährleistet ist, dass die NusG-Moleküle einerseits sehr hohen Temperaturen standhalten, andererseits aber an der Genexpression und an weiteren zellulären Prozessen mitwirken können", erklärt Dr. Kristian Schweimer vom Lehrstuhl Biopolymere der Universität Bayreuth. "Ein solcher blitzschneller Strukturwechsel ist bei ähnlichen Proteinen der bei Raumtemperatur lebenden Bakterien bisher nicht beobachtet worden."

NusG-Proteine aus hitzebeständigen Bakterien:
Untätig in normalen Bakterien

Was geschieht, wenn man E.coli-Bakterien, die am besten bei Körpertemperatur leben, diese zwischen einer offenen und einer geschlossenen Struktur oszillierenden NusG-Proteine unterschiebt? Wie die Bayreuther Wissenschaftler herausgefunden haben, verhalten sich die eingepflanzten Proteine völlig passiv. „Die Neigung zur Autoinhibition ist offenbar die Ursache dafür, dass die NusG-Proteine in gewöhnlichen Bakterien wie E.coli nicht durch NusG-Proteine aus den hitzebeständigen Bakterien ersetzt werden können“, meint Johanna Drögemüller M.Sc., die Erstautorin des Beitrags in Structure.
Eine weitere strukturelle Besonderheit

Die kristallographischen Analysen in Berlin haben gezeigt, dass das Protein NusG in den hitzebeständigen Bakterien der Spezies Thermotoga maritima noch eine andere strukturelle Besonderheit aufweist: Die aminoterminale Domäne enthält ihrerseits eine strukturelle Untereinheit. Welche Funktionen dieses Strukturelement hat, ist bisher allerdings noch ungeklärt.

Veröffentlichung:

Drögemüller et al.
An Autoinhibited State in the Structure of Thermotoga maritima NusG.
Structure 2013, DOI: 10.1016/j.str.2012.12.015

Ansprechpartner:

Dr. Kristian Schweimer
Universität Bayreuth
Lehrstuhl für Biopolymere
D-95440 Bayreuth
Telefon: +49 (0) 921 55 3543
E-Mail: kristian.schweimer@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE