Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungewöhnliche Proteinstrukturen machen Bakterien hitzebeständig

06.03.2013
Bei Dauertemperaturen von mehr als 80 Grad Celsius haben die meisten auf der Erde lebenden Organismen keine Überlebenschance.

Thermotoga maritima jedoch ist ein Bakterium, das sich dem Wachstum in heißen Quellen und in vulkanischem Gestein sehr gut angepasst hat. Damit Bakterien unter diesen Bedingungen leben können, müssen ihre Proteine sehr temperaturstabil sein.


Links: Das Protein NusG zeigt in Bakterien wie Escherichia coli keine Wechselwirkung zwischen der N-terminalen Domäne (blau) und der C-terminalen Domäne (rot). Die Domänen sind relativ zueinander frei beweglich und können so an weitere Proteine binden. // Mitte: Das Bakterium Escherichia coli besitzt auch ein dem NusG ähnliches Protein, RfaH. Hier liegen die Domänen eng beieinander, sie werden erst durch die Bindung eines spezifischen DNA Stücks geöffnet, wobei die C-terminale Domäne komplett ihre Struktur ändert. // Rechts: Im Bakterium Thermotoga maritima trägt die Wechselwirkung zwischen der N-terminalen Domäne (blau) und der C-terminalen Domäne (rot) erheblich zur Stabilität des Proteins bei. Zusätzlich existiert eine weitere strukturelle Einheit (gelb), deren Funktion bisher unbekannt ist.

Grafik: Dr. Kristian Schweimer, Lehrstuhl Biopolymere, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Die erhöhte Stabilität des Proteins NusG aus Thermotoga maritima zum Beispiel kann durch das ungewöhnliche Wechselspiel einzelner Strukturelemente erklärt werden. Darüber berichtet ein Forschungsteam unter der Leitung von Prof. Dr. Paul Rösch, Lehrstuhl Biopolymere der Universität Bayreuth, in der Zeitschrift "Structure".

Funktionsuntüchtig, aber stabil:
NusG-Moleküle im geschlossenen Zustand

Proteine vom Typ des bakteriellen NusG übernehmen, soweit bekannt, in vielen Organismen lebenswichtige Steuerungsfunktionen. NusG-Proteine sind entscheidend an der Genexpression beteiligt, insbesondere am Vorgang der Transkription, bei dem die in der DNA enthaltene Erbinformation in RNA umgeschrieben wird. Hier hat NusG die Aufgabe, verschiedene weitere Proteine mit dem Enzym RNA-Polymerase zu verknüpfen. Oft besteht NusG aus zwei klar unterscheidbaren räumlich strukturierten Einheiten, der amino- und der carboxyterminalen Domäne. Wie bei früheren Forschungsarbeiten beobachtet werden konnte, treten in vielen Bakterienarten diese Domänen nicht miteinander in Kontakt. Dadurch ist gewährleistet, dass sie sich bei der Erfüllung ihrer spezifischen Funktionen nicht behindern.

Anders verhält es sich jedoch bei der Bakterienart Thermotoga maritima. Wie die Bayreuther Wissenschaftler zusammen mit Kollegen an der Freien Universität Berlin und der Columbia University, New York, festgestellt haben, hat das Protein NusG in diesen Bakterien zumeist eine geschlossene Struktur, das heißt, die zwei Domänen liegen fast immer eng beieinander. Dies hat zur Folge, dass ausgerechnet diejenigen Bereiche, die mit anderen Proteinen wechselwirken können, sich gegenseitig verdecken. In dieser Struktur ist keine der beiden Domänen imstande, an lebenswichtigen Prozessen der Genexpression teilzunehmen. Das Protein NusG macht sich mithin selbst funktionsuntüchtig, ein Zustand, den die Forschung als Autoinhibition bezeichnet. Und doch hat diese Struktur für das Bakterium einen wesentlichen Vorteil: Sie erhöht die Stabilität des Proteins und bewirkt, dass es hohen Temperaturen standhalten kann.

Blitzschnelle Strukturwechsel:
Oszillierende NusG-Moleküle

NusG verharrt aber nicht in dieser geschützten Struktur. Um wenigstens kurzfristig aktiv werden zu können, öffnet sich das Protein. Jetzt haben die beiden Domänen die Bewegungsfreiheit, die sie brauchen, um mit anderen Proteinen in Wechselwirkung zu treten. Mit NMR-spektroskopischen Analysen an der Universität Bayreuth ist es den Forschern gelungen, diesen Strukturwechsel zu beobachten. Ihre Untersuchungen haben zu dem Ergebnis geführt, dass sich jedes NusG-Molekül für den winzigen Zeitraum von 2 Hunderttausendstel Sekunden öffnet. Danach fällt es sofort in den geschlossenen Zustand zurück, in dem es etwa 1 Tausendstel Sekunde lang verbleibt. Da sich dieser Rückfall in die Inaktivität schneller vollzieht als die Öffnung, befinden sich zu jedem beliebigen Zeitpunkt rund 98 Prozent der im Bakterium enthaltenen NusG-Moleküle im geschlossenen Zustand. Nur die restlichen 2 Prozent sind geöffnet.
"Das ständige Oszillieren zwischen zwei verschiedenen Strukturen ist ein äußerst ungewöhnlicher Kunstgriff der Natur, durch den gewährleistet ist, dass die NusG-Moleküle einerseits sehr hohen Temperaturen standhalten, andererseits aber an der Genexpression und an weiteren zellulären Prozessen mitwirken können", erklärt Dr. Kristian Schweimer vom Lehrstuhl Biopolymere der Universität Bayreuth. "Ein solcher blitzschneller Strukturwechsel ist bei ähnlichen Proteinen der bei Raumtemperatur lebenden Bakterien bisher nicht beobachtet worden."

NusG-Proteine aus hitzebeständigen Bakterien:
Untätig in normalen Bakterien

Was geschieht, wenn man E.coli-Bakterien, die am besten bei Körpertemperatur leben, diese zwischen einer offenen und einer geschlossenen Struktur oszillierenden NusG-Proteine unterschiebt? Wie die Bayreuther Wissenschaftler herausgefunden haben, verhalten sich die eingepflanzten Proteine völlig passiv. „Die Neigung zur Autoinhibition ist offenbar die Ursache dafür, dass die NusG-Proteine in gewöhnlichen Bakterien wie E.coli nicht durch NusG-Proteine aus den hitzebeständigen Bakterien ersetzt werden können“, meint Johanna Drögemüller M.Sc., die Erstautorin des Beitrags in Structure.
Eine weitere strukturelle Besonderheit

Die kristallographischen Analysen in Berlin haben gezeigt, dass das Protein NusG in den hitzebeständigen Bakterien der Spezies Thermotoga maritima noch eine andere strukturelle Besonderheit aufweist: Die aminoterminale Domäne enthält ihrerseits eine strukturelle Untereinheit. Welche Funktionen dieses Strukturelement hat, ist bisher allerdings noch ungeklärt.

Veröffentlichung:

Drögemüller et al.
An Autoinhibited State in the Structure of Thermotoga maritima NusG.
Structure 2013, DOI: 10.1016/j.str.2012.12.015

Ansprechpartner:

Dr. Kristian Schweimer
Universität Bayreuth
Lehrstuhl für Biopolymere
D-95440 Bayreuth
Telefon: +49 (0) 921 55 3543
E-Mail: kristian.schweimer@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie