Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungefaltete Proteine schrumpfen bei Wärme und engen Platzverhältnissen

24.03.2014

Nicht nur komplex gefaltete Proteine erfüllen wichtige Funktionen im menschlichen Körper. Auch entfaltete Moleküle übernehmen wichtige Aufgaben. Forschende der Universität Zürich stellen fest, wie molekulare Kräfte die Struktur der Proteine beeinflussen: Die entfalteten Proteine werden bei erhöhter Temperatur und Dichtestress kleiner.

Proteine sind wichtige Moleküle in unserem Körper, die ein vielfältiges Spektrum von Funktionen erfüllen: Sie helfen etwa als Enzyme mit, Nahrung zu verwerten, ermöglichen als Muskelproteine die Bewegung, sind als Antikörper in die Immunabwehr sowie als Hormonrezeptoren in die Signalübertragung in den Zellen eingespannt.

Bis vor kurzem ging man davon aus, dass alle Proteine eine klar definierte dreidimensionale Struktur annehmen – sich also falten –, um solche Funktionen erfüllen zu können. Überraschenderweise hat sich aber herausgestellt, dass viele wichtige Proteine als entfaltete Knäuel vorkommen. Forschende versuchen herauszufinden, wie diese unstrukturierten Proteine überhaupt hochkomplexe Funktionen ausführen können.

Die Forschungsgruppe um Ben Schuler vom Biochemischen Institut der Universität Zürich hat nun festgestellt, dass eine Temperaturerhöhung dazu führt, dass sich entfaltete Proteine zusammenziehen und kleiner werden. Denselben Effekt haben auch andere Umgebungseinflüsse:

Die dichten Verhältnisse in den Zellen lassen die Proteine schrumpfen. Da diese Proteine daran beteiligt sind, mit anderen Molekülen im Körper zu interagieren und andere Proteine zusammenzubringen, ist das Verständnis dieser Prozesse essentiell, «da sie in vielen Vorgängen in unserem Körper eine grosse Rolle spielen, beispielsweise auch bei der Entstehung von Krebs», so Studienleiter Ben Schuler.

Messungen mit dem «molekularen Massstab»

«Dass sich bei höherer Temperatur die entfalteten Proteine verkleinern, deutet darauf hin, dass das Zellwasser eine überaus wichtige Rolle dafür spielt, welche räumliche Anordnung die Moleküle schliesslich einnehmen», kommentiert Schuler die Auswirkung von Temperatur auf die Proteinstruktur. Die Biophysiker wenden für ihre Untersuchungen die sogenannte Einzelmolekül-Spektroskopie an. Kleine Farbstoff-Sonden am Protein erlauben es, Veränderungen mit einer Genauigkeit von mehr als einem millionstel Millimeter festzustellen. Mit diesem «molekularen Massstab» lässt sich messen, wie molekulare Kräfte auf die Proteinstruktur wirken.

Mit Computersimulationen haben die Forschenden das Verhalten der unstrukturierten Proteine nachgestellt, und sie wollen damit künftig deren Eigenschaften und Funktionen besser vorhersagen.

Resultate aus dem Reagenzglas korrigieren

Wichtig ist es gemäss Schuler deshalb, die Proteine nicht nur im Reagenzglas, sondern auch im Organismus zu beobachten. «Damit wird berücksichtigt, dass es auf molekularer Ebene in unserem Körper sehr eng ist, denn in unseren Zellen drängen sich enorme Mengen an Biomolekülen auf engstem Raum zusammen», so Schuler. Eine solche «molekulare Überbevölkerung» haben die Biochemiker nachgestellt und beobachtet, dass sich in dieser Umgebung unstrukturierte Proteine ebenfalls zusammenziehen.

Viele Experimente müssten womöglich aufgrund dieser Resultate revidiert werden, denn die räumliche Anordnung der Moleküle im Organismus könne sich deutlich von der im Reagenzglas unterscheiden, so der Biochemiker der Universität Zürich. «Wir haben deshalb eine theoretische Analyse entwickelt, mit der sich die Auswirkungen molekularer Überbevölkerung vorhersagen lassen.» In einem nächsten Schritt wollen die Forschenden diese Erkenntnisse auf Messungen anzuwenden, die direkt in lebenden Zellen durchgeführt werden.

Literatur:
Andrea Soranno, Iwo Koenig, Madeleine B. Borgia, Hagen Hofmann, Franziska Zosel, Daniel Nettels,
and Benjamin Schuler. Single-molecule spectroscopy reveals polymer effects
of disordered proteins in crowded environments. PNAS, March 2014. doi:10.1073/pnas.1322611111

René Wuttke, Hagen Hofmann, Daniel Nettels, Madeleine B. Borgia, Jeetain Mittal, Robert B. Best and Benjamin Schuler. Temperature-dependent solvation modulates the dimensions of disordered proteins. PNAS, March 2014. doi:10.1073/pnas.1313006111

 Kontakt:
Prof. Benjamin Schuler
Biochemisches Institut
Universität Zürich
Tel. +41 44 635 55 35
E-Mail: schuler@bioc.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise