Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungefaltete Proteine schrumpfen bei Wärme und engen Platzverhältnissen

24.03.2014

Nicht nur komplex gefaltete Proteine erfüllen wichtige Funktionen im menschlichen Körper. Auch entfaltete Moleküle übernehmen wichtige Aufgaben. Forschende der Universität Zürich stellen fest, wie molekulare Kräfte die Struktur der Proteine beeinflussen: Die entfalteten Proteine werden bei erhöhter Temperatur und Dichtestress kleiner.

Proteine sind wichtige Moleküle in unserem Körper, die ein vielfältiges Spektrum von Funktionen erfüllen: Sie helfen etwa als Enzyme mit, Nahrung zu verwerten, ermöglichen als Muskelproteine die Bewegung, sind als Antikörper in die Immunabwehr sowie als Hormonrezeptoren in die Signalübertragung in den Zellen eingespannt.

Bis vor kurzem ging man davon aus, dass alle Proteine eine klar definierte dreidimensionale Struktur annehmen – sich also falten –, um solche Funktionen erfüllen zu können. Überraschenderweise hat sich aber herausgestellt, dass viele wichtige Proteine als entfaltete Knäuel vorkommen. Forschende versuchen herauszufinden, wie diese unstrukturierten Proteine überhaupt hochkomplexe Funktionen ausführen können.

Die Forschungsgruppe um Ben Schuler vom Biochemischen Institut der Universität Zürich hat nun festgestellt, dass eine Temperaturerhöhung dazu führt, dass sich entfaltete Proteine zusammenziehen und kleiner werden. Denselben Effekt haben auch andere Umgebungseinflüsse:

Die dichten Verhältnisse in den Zellen lassen die Proteine schrumpfen. Da diese Proteine daran beteiligt sind, mit anderen Molekülen im Körper zu interagieren und andere Proteine zusammenzubringen, ist das Verständnis dieser Prozesse essentiell, «da sie in vielen Vorgängen in unserem Körper eine grosse Rolle spielen, beispielsweise auch bei der Entstehung von Krebs», so Studienleiter Ben Schuler.

Messungen mit dem «molekularen Massstab»

«Dass sich bei höherer Temperatur die entfalteten Proteine verkleinern, deutet darauf hin, dass das Zellwasser eine überaus wichtige Rolle dafür spielt, welche räumliche Anordnung die Moleküle schliesslich einnehmen», kommentiert Schuler die Auswirkung von Temperatur auf die Proteinstruktur. Die Biophysiker wenden für ihre Untersuchungen die sogenannte Einzelmolekül-Spektroskopie an. Kleine Farbstoff-Sonden am Protein erlauben es, Veränderungen mit einer Genauigkeit von mehr als einem millionstel Millimeter festzustellen. Mit diesem «molekularen Massstab» lässt sich messen, wie molekulare Kräfte auf die Proteinstruktur wirken.

Mit Computersimulationen haben die Forschenden das Verhalten der unstrukturierten Proteine nachgestellt, und sie wollen damit künftig deren Eigenschaften und Funktionen besser vorhersagen.

Resultate aus dem Reagenzglas korrigieren

Wichtig ist es gemäss Schuler deshalb, die Proteine nicht nur im Reagenzglas, sondern auch im Organismus zu beobachten. «Damit wird berücksichtigt, dass es auf molekularer Ebene in unserem Körper sehr eng ist, denn in unseren Zellen drängen sich enorme Mengen an Biomolekülen auf engstem Raum zusammen», so Schuler. Eine solche «molekulare Überbevölkerung» haben die Biochemiker nachgestellt und beobachtet, dass sich in dieser Umgebung unstrukturierte Proteine ebenfalls zusammenziehen.

Viele Experimente müssten womöglich aufgrund dieser Resultate revidiert werden, denn die räumliche Anordnung der Moleküle im Organismus könne sich deutlich von der im Reagenzglas unterscheiden, so der Biochemiker der Universität Zürich. «Wir haben deshalb eine theoretische Analyse entwickelt, mit der sich die Auswirkungen molekularer Überbevölkerung vorhersagen lassen.» In einem nächsten Schritt wollen die Forschenden diese Erkenntnisse auf Messungen anzuwenden, die direkt in lebenden Zellen durchgeführt werden.

Literatur:
Andrea Soranno, Iwo Koenig, Madeleine B. Borgia, Hagen Hofmann, Franziska Zosel, Daniel Nettels,
and Benjamin Schuler. Single-molecule spectroscopy reveals polymer effects
of disordered proteins in crowded environments. PNAS, March 2014. doi:10.1073/pnas.1322611111

René Wuttke, Hagen Hofmann, Daniel Nettels, Madeleine B. Borgia, Jeetain Mittal, Robert B. Best and Benjamin Schuler. Temperature-dependent solvation modulates the dimensions of disordered proteins. PNAS, March 2014. doi:10.1073/pnas.1313006111

 Kontakt:
Prof. Benjamin Schuler
Biochemisches Institut
Universität Zürich
Tel. +41 44 635 55 35
E-Mail: schuler@bioc.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie