Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschender Platzwechsel in DNA-Bausteinen

12.01.2015

Gasphasen-Untersuchungen von Biomolekülen: Ergebnisse kritisch betrachten

Massenspektrometrie von Biomolekülen, etwa von Proteinen oder DNA, gewinnt in Molekular-, Zell- und Systembiologie zunehmend an Bedeutung. Anders als bislang angenommen lassen sich jedoch Ergebnisse solcher Gasphasen-Untersuchungen nicht immer eins zu eins auf Moleküle in wässrigen Lösungen übertragen.


Moleküldynamikrechnungen und Massenspektrometrie ermöglichen zusammen eine Beschreibung der Struktur von Biomolekülen, wie etwa der DNA. Dazu wird die Probe – im Fall der internationalen Forschergruppe eine wässrige Lösung mit DNA-Bausteinen, sogenannten Oligonukleotiden (links) – mittels Verdampfung (Mitte) in den gasförmigen Zustand (rechts) gebracht. Dabei konnten die Wissenschaftler erstmals die Dynamik der DNA-Bausteine auf verschiedenen Zeitskalen vollständig nachvollziehen. Die Forscher beobachteten, dass sich innerhalb weniger Pikosekunden – also rund einem Billionstel einer Sekunde – quantenmechanische Protonentransferreaktionen abspielten: Die bestehende Bindung eines Wasserstoffatoms (H) brach ab und das Atom wechselte seinen Platz (rechts). Diese Strukturveränderung hatte zuvor niemand erwartet. Die Ergebnisse der Forscher stellen die bisher übliche Annahme, dass die chemische Topologie der Biomoleküle bei Überführung in Gasphase erhalten bleibt, in Frage.

Grafik: Forschungszentrum Jülich (Bildquellen: Mikhail Mishchenko/Fotolia.com, Institute for Research in Biomedicine - IRB Barcelona, Forschungszentrum Jülich)

Das berichtet eine internationale Forschergruppe mit Jülicher Beteiligung in der Fachzeitschrift "Angewandte Chemie". Für die Erforschung von Biomolekülen ist das eine wichtige Erkenntnis, da diese Teilchen in Lebewesen unter wässrigen Bedingungen existieren.

Die Struktur von Biomolekülen ist entscheidend für deren Funktion. Darum analysieren Forscher den Aufbau von Molekülen. Ein etabliertes Verfahren, um etwa die Masse von Atomen oder Molekülen zu bestimmen, ist die Massenspektrometrie. Dabei werden Moleküle aus wässriger Lösung in die Gasphase überführt.

"Durch die Fähigkeit, Tausende von Biomolekülen sowie deren Wechselwirkungen bestimmen zu können, hat sich dieses Verfahren insbesondere in der Biomedizin und Wirkstoffforschung zu einem unverzichtbarem Instrument entwickelt", sagt einer der beteiligten Wissenschaftler, Prof. Paolo Carloni, Leiter des Bereichs "Computational Biomedicine" am Forschungszentrum Jülich und des Bereichs "Computational Biophysics" an der German Research School for Simulation Sciences (GRS), einer Gemeinschaftseinrichtung des Forschungszentrum Jülich und der RWTH Aachen.

Bislang ist die Forschung davon ausgegangen, dass sich Messergebnisse aus der Gasphase sehr gut auf wässrige Lösungen übertragen lassen – zumindest hatten das alle bisherigen Untersuchungen ergeben. Mit Experimenten und Simulationen konnten die Wissenschaftler nun aber nachweisen, dass sogenannte Oligonukleotide – Bausteine der DNA – ihre Struktur in der Gasphase deutlich stärker verändern als erwartet: In der Gasphase wechselten Wasserstoffatome den Platz.

"Das bedeutet, dass ganz andere Molekülstrukturen entstehen als unter flüssigen Bedingungen", erläutert der Jülicher Wissenschaftler Dr. Jens Dreyer, der an der Studie mitgewirkt hat. Dadurch sind die Ergebnisse für diese Moleküle nicht unmittelbar auf die Struktur in Flüssigkeiten übertragbar. Also auf die Bedingungen, wie sie in realen lebenden Systemen herrschen. Aus Sicht der Forscher könnte das auch bei anderen Molekülen passieren. "Aufgrund unserer Erkenntnisse empfiehlt es sich, Resultate von Gasphasen-Untersuchungen kritisch zu betrachten und ähnliche Veränderungen wie bei Oligonukleotiden nicht von vorneherein auszuschließen", so Paolo Carloni.

Die Veränderungen konnten die Forscher nur beobachten, weil sie eine ganz bestimmte Methode anwandten: die sogenannte ab initio-Molekulardynamiksimulation. Dahinter verbirgt sich eine Computersimulation, die auf einem quantenmechanischen Ansatz beruht. Mit solchen quantenmechanischen Simulationen an biologischen Systemen arbeitet die Arbeitsgruppe von Prof. Carloni bereits seit Langem.

Quantenmechanische Berechnungen sind genauer als andere Simulationsmethoden, aber auch äußerst komplex und aufwändig. Für große Biomoleküle sind nur Supercomputer in der Lage, sie durchzuführen. Die Jülicher Wissenschaftler haben den Vorteil, dass sie auf Deutschlands schnellsten Superrechner zurückgreifen können: Jülichs JUQUEEN.

Auf die Idee, ab initio-Molekulardynamiksimulationen mit Oligonukleotiden durchzuführen, kamen die Jülicher Forscher durch die Arbeiten der Partner vom Institute for Research in Biomedicine (IRB Barcelona) und der Universität Lüttich. Diese hatten festgestellt, dass die Ergebnisse von Massenspektrometrie-Experimenten und klassischen Computersimulationen für diese Moleküle nicht übereinstimmten.

Die Forscher konnten das zunächst nicht erklären. Mit klassischen Computersimulation können zwar Aussagen über Strukturveränderungen getroffen werden, etwa bei Wasserstoffbrücken, nicht aber über das komplette Brechen von Bindungen. Solche chemischen Reaktionen sind in den Modellen einfach nicht definiert. Erst durch die ab initio-Molekulardynamiksimulation auf JUQUEEN konnte das Rätsel gelöst werden.

Originalveröffentlichung

Annalisa Arcella, Jens Dreyer, Emiliano Ippoliti, Ivan Ivani, Guillem Portella, Valérie Gabelica, Paolo Carloni und Modesto Orozco. Structure and Dynamics of Oligonucleotides in the Gas Phase. Angewandte Chemie, Volume 127, Issue 2, Seiten 477–481, 7. Januar 2015
http://dx.doi.org/10.1002/anie.201406910

Ansprechpartner:

Prof. Dr. Paolo Carloni
Bereich Computational Biomedicine am Institute for Advanced Simulation (IAS-5) / Institut für Neurowissenschaften und Medizin (INM-9)
Bereich Computational Biophysics an der German Research School for Simulation Sciences (GRS)
Tel.: +49 2461 61 8941
E-Mail: p.carloni@fz-juelich.de

Dr. Jens Dreyer
Vorstandsbüro und Internationales
Tel.: +49 2461 61 8919
E-Mail: j.dreyer@fz-juelich.de

Pressekontakt:

Annette Stettien, Forschungszentrum Jülich
Tel.: +49 2461 61 2388
E-Mail: a.stettien@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-01-12-DNA-bausteine.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics