Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschender Platzwechsel in DNA-Bausteinen

12.01.2015

Gasphasen-Untersuchungen von Biomolekülen: Ergebnisse kritisch betrachten

Massenspektrometrie von Biomolekülen, etwa von Proteinen oder DNA, gewinnt in Molekular-, Zell- und Systembiologie zunehmend an Bedeutung. Anders als bislang angenommen lassen sich jedoch Ergebnisse solcher Gasphasen-Untersuchungen nicht immer eins zu eins auf Moleküle in wässrigen Lösungen übertragen.


Moleküldynamikrechnungen und Massenspektrometrie ermöglichen zusammen eine Beschreibung der Struktur von Biomolekülen, wie etwa der DNA. Dazu wird die Probe – im Fall der internationalen Forschergruppe eine wässrige Lösung mit DNA-Bausteinen, sogenannten Oligonukleotiden (links) – mittels Verdampfung (Mitte) in den gasförmigen Zustand (rechts) gebracht. Dabei konnten die Wissenschaftler erstmals die Dynamik der DNA-Bausteine auf verschiedenen Zeitskalen vollständig nachvollziehen. Die Forscher beobachteten, dass sich innerhalb weniger Pikosekunden – also rund einem Billionstel einer Sekunde – quantenmechanische Protonentransferreaktionen abspielten: Die bestehende Bindung eines Wasserstoffatoms (H) brach ab und das Atom wechselte seinen Platz (rechts). Diese Strukturveränderung hatte zuvor niemand erwartet. Die Ergebnisse der Forscher stellen die bisher übliche Annahme, dass die chemische Topologie der Biomoleküle bei Überführung in Gasphase erhalten bleibt, in Frage.

Grafik: Forschungszentrum Jülich (Bildquellen: Mikhail Mishchenko/Fotolia.com, Institute for Research in Biomedicine - IRB Barcelona, Forschungszentrum Jülich)

Das berichtet eine internationale Forschergruppe mit Jülicher Beteiligung in der Fachzeitschrift "Angewandte Chemie". Für die Erforschung von Biomolekülen ist das eine wichtige Erkenntnis, da diese Teilchen in Lebewesen unter wässrigen Bedingungen existieren.

Die Struktur von Biomolekülen ist entscheidend für deren Funktion. Darum analysieren Forscher den Aufbau von Molekülen. Ein etabliertes Verfahren, um etwa die Masse von Atomen oder Molekülen zu bestimmen, ist die Massenspektrometrie. Dabei werden Moleküle aus wässriger Lösung in die Gasphase überführt.

"Durch die Fähigkeit, Tausende von Biomolekülen sowie deren Wechselwirkungen bestimmen zu können, hat sich dieses Verfahren insbesondere in der Biomedizin und Wirkstoffforschung zu einem unverzichtbarem Instrument entwickelt", sagt einer der beteiligten Wissenschaftler, Prof. Paolo Carloni, Leiter des Bereichs "Computational Biomedicine" am Forschungszentrum Jülich und des Bereichs "Computational Biophysics" an der German Research School for Simulation Sciences (GRS), einer Gemeinschaftseinrichtung des Forschungszentrum Jülich und der RWTH Aachen.

Bislang ist die Forschung davon ausgegangen, dass sich Messergebnisse aus der Gasphase sehr gut auf wässrige Lösungen übertragen lassen – zumindest hatten das alle bisherigen Untersuchungen ergeben. Mit Experimenten und Simulationen konnten die Wissenschaftler nun aber nachweisen, dass sogenannte Oligonukleotide – Bausteine der DNA – ihre Struktur in der Gasphase deutlich stärker verändern als erwartet: In der Gasphase wechselten Wasserstoffatome den Platz.

"Das bedeutet, dass ganz andere Molekülstrukturen entstehen als unter flüssigen Bedingungen", erläutert der Jülicher Wissenschaftler Dr. Jens Dreyer, der an der Studie mitgewirkt hat. Dadurch sind die Ergebnisse für diese Moleküle nicht unmittelbar auf die Struktur in Flüssigkeiten übertragbar. Also auf die Bedingungen, wie sie in realen lebenden Systemen herrschen. Aus Sicht der Forscher könnte das auch bei anderen Molekülen passieren. "Aufgrund unserer Erkenntnisse empfiehlt es sich, Resultate von Gasphasen-Untersuchungen kritisch zu betrachten und ähnliche Veränderungen wie bei Oligonukleotiden nicht von vorneherein auszuschließen", so Paolo Carloni.

Die Veränderungen konnten die Forscher nur beobachten, weil sie eine ganz bestimmte Methode anwandten: die sogenannte ab initio-Molekulardynamiksimulation. Dahinter verbirgt sich eine Computersimulation, die auf einem quantenmechanischen Ansatz beruht. Mit solchen quantenmechanischen Simulationen an biologischen Systemen arbeitet die Arbeitsgruppe von Prof. Carloni bereits seit Langem.

Quantenmechanische Berechnungen sind genauer als andere Simulationsmethoden, aber auch äußerst komplex und aufwändig. Für große Biomoleküle sind nur Supercomputer in der Lage, sie durchzuführen. Die Jülicher Wissenschaftler haben den Vorteil, dass sie auf Deutschlands schnellsten Superrechner zurückgreifen können: Jülichs JUQUEEN.

Auf die Idee, ab initio-Molekulardynamiksimulationen mit Oligonukleotiden durchzuführen, kamen die Jülicher Forscher durch die Arbeiten der Partner vom Institute for Research in Biomedicine (IRB Barcelona) und der Universität Lüttich. Diese hatten festgestellt, dass die Ergebnisse von Massenspektrometrie-Experimenten und klassischen Computersimulationen für diese Moleküle nicht übereinstimmten.

Die Forscher konnten das zunächst nicht erklären. Mit klassischen Computersimulation können zwar Aussagen über Strukturveränderungen getroffen werden, etwa bei Wasserstoffbrücken, nicht aber über das komplette Brechen von Bindungen. Solche chemischen Reaktionen sind in den Modellen einfach nicht definiert. Erst durch die ab initio-Molekulardynamiksimulation auf JUQUEEN konnte das Rätsel gelöst werden.

Originalveröffentlichung

Annalisa Arcella, Jens Dreyer, Emiliano Ippoliti, Ivan Ivani, Guillem Portella, Valérie Gabelica, Paolo Carloni und Modesto Orozco. Structure and Dynamics of Oligonucleotides in the Gas Phase. Angewandte Chemie, Volume 127, Issue 2, Seiten 477–481, 7. Januar 2015
http://dx.doi.org/10.1002/anie.201406910

Ansprechpartner:

Prof. Dr. Paolo Carloni
Bereich Computational Biomedicine am Institute for Advanced Simulation (IAS-5) / Institut für Neurowissenschaften und Medizin (INM-9)
Bereich Computational Biophysics an der German Research School for Simulation Sciences (GRS)
Tel.: +49 2461 61 8941
E-Mail: p.carloni@fz-juelich.de

Dr. Jens Dreyer
Vorstandsbüro und Internationales
Tel.: +49 2461 61 8919
E-Mail: j.dreyer@fz-juelich.de

Pressekontakt:

Annette Stettien, Forschungszentrum Jülich
Tel.: +49 2461 61 2388
E-Mail: a.stettien@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-01-12-DNA-bausteine.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Virologen der Saar-Uni entdecken neuen Mechanismus, der die Hautkrebs-Entstehung begünstigt
23.06.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Repairon erhält Finanzierung für die Entwicklung künstlicher Herzmuskelgewebe

23.06.2017 | Förderungen Preise

Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern

23.06.2017 | Informationstechnologie

Virologen der Saar-Uni entdecken neuen Mechanismus, der die Hautkrebs-Entstehung begünstigt

23.06.2017 | Biowissenschaften Chemie