Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überleben bei Hunger - Neuer Mechanismus für Zellerhalt entdeckt

15.05.2018

Forscher des Leibniz-Instituts für Alternsforschung – Fritz-Lipmann-Institut (FLI) haben in Kooperation mit dem Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA, einen neuen Mechanismus entdeckt, der für den Zellerhalt bei Nährstoffmangel wichtig ist. Das Protein NUFIP1, das normalerweise im Zellkern vorkommt, wandert bei Nährstoffmangel in das Zytoplasma und bindet an Ribosomen, die damit für den Abbau markiert werden; eine wichtige Überlebensstrategie der Zelle, um bei Hunger den Erhalt der Zelle abzusichern. Die Forschungsergebnisse wurden jetzt in der renommierten Fachzeitschrift Science publiziert.

Das Recyclingprogramm der Zelle ist die Autophagie; ein elementarer Bestandteil der zellulären Qualitätskontrolle und für die Aufrechterhaltung der Funktionalität der Zelle enorm wichtig. Durch den Abbau von fehlgefalteten Proteinen oder geschädigten Organellen werden negative Auswirkungen auf die Zelle verhindert. Darüber hinaus werden Nährstoffe recycelt, die somit der Zelle für den Aufbau anderer Stoffe wieder zur Verfügung stehen. Fehler in diesem Recyclingprozess können zu Krebs, neurodegenerativen Erkrankungen und einer erhöhten Infektionsanfälligkeit führen, aber auch das Altern beeinflussen.


Das Protein NUFIP1 ist für den ribosomalen Abbau bei Nährstoffmangel notwendig und sichert damit das Überleben der Zelle in Hungersituationen ab.

(Grafik: FLI / Magdalena Voll; Quelle: u.a. Wikipedia)

Autophagie findet unter normalen Bedingungen nur in geringem Umfang statt. Bei Mangel an Nährstoffen, z.B. Aminosäuren, wird sie jedoch angekurbelt. Bekannt ist, dass der „mechanistic target of rapamycin complex 1“ (mTORC1), ein nährstoffsensitiver Wachstumsregulator, dabei eine wichtige Rolle spielt. Er regelt den Fluss der Makromoleküle, die für den Abbau bestimmt sind, zum „Magen der Zelle“, den Lysosomen. Doch wie erfolgt die Steuerung in Abhängigkeit vom Nährstoffgehalt des Mediums in der Zelle? Welche Proteine sind daran beteiligt?

Einblicke in Recyclingprozess der Zelle

Forscher um Dr. Alessandro Ori vom Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (FLI) in Jena gingen in Zusammenarbeit mit der Forschungsgruppe um Dr. David M. Sabatini vom Whitehead Institute des Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA, diesen Fragen mit Hilfe umfangreicher quantitativer Proteomanalysen genauer nach, um das „lysosomale Proteom“ unter Hemmung des mTORC1-Signalwegs umfassend zu untersuchen. Dafür analysierten sie die Lysosomen im nährstoffreichen Medium, aber auch bei Nährstoffmangel ausgelöst durch „Hunger“ an Aminosäuren und Glukose sowie durch die gezielte Hemmung der mTOR Kinase durch den Wirkstoff Torin1.

„Mit Hilfe der von der Forschungsgruppe Sabatini entwickelten schnellen LysoIP-Methode und der modernen Massenspektroskopie-Plattform der Core Facility Proteomanalyse am FLI, konnten wir die Dynamik des lysosomalen Proteoms in Abhängigkeit von der mTORC1-Aktivierung sehr genau untersuchen“, schwärmt Dr. Alessandro Ori, Juniorgruppenleiter am FLI. Das internationale Team identifizierte über 800 Proteine, die mit Lysosomen assoziiert sind. „Von den vielen Proteinen weckte das Nuclear Fragile X mental retardation-interacting protein 1 (NUFIP1) unser besonderes Interesse, da seine Häufigkeit nach der Torin1-Behandlung stark zunahm.“

Wanderung von NUFIP1 bei mTOR-Hemmung

Das Protein NUFIP1 ist normalerweise im Zellkern lokalisiert. Jüngste Studien zeigten jedoch, dass es auch im Zytoplasma auftreten kann. Die Forscher vom MIT konnten mittels biochemischer Analysen und bildgebender Studien bestätigen, dass das Protein NUFIP1 bei der mTOR-Hemmung vom Zellkern auf Autophagosomen und Lysosomen umverteilt wird. „Beides Zellkomponenten, die bei der Autophagie eine wichtige Rolle spielen“, unterstreicht Dr. Ori die gefundenen Ergebnisse.

NUFIP1 ist wichtig, um Hunger zu überleben

Mit diesem „Schnappschuss in die Zelle“ konnten die Forscher dem Protein NUFIP1 eine neue Rolle zuweisen, da man bislang nicht wusste, dass es auch mit Lysosomen assoziiert auftreten kann. Bei Nährstoffmangel bindet NUFIP1 an intakte Ribosomen und markiert sie damit für den Abbau im Lysosom. Die Ribosomen sind die „Proteinfabriken der Zelle“. Es handelt sich dabei um große Komplexe aus Proteinen und RNA. Werden sie abgebaut, stellen sie eine der wichtigsten Nährstoffquellen dar. „Wir konnten mit unseren Studien zeigen, dass NUFIP1 für den ribosomalen Abbau bei Nährstoffmangel in Mensch- und Mauszellen notwendig ist und so das Überleben der Zelle in Hungersituationen absichert“, unterstreicht Dr. Ori.

Die Ergebnisse der Forscher aus Deutschland und USA zeigen, dass das Protein NUFIP1 unter Nährstoffmangel eine wichtige Rolle bei der selektiven Autophagie von Ribosomen in Säugetierzellen spielt. Die Studie zeigt eindrucksvoll, wie durch Untersuchung der Dynamiken organeller Proteome grundlegende Mechanismen aufgedeckt werden können, die für die Biomedizin- und Alternsforschung relevant sind.

Publikation

NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Gregory A. Wyant, Monther Abu-Remaileh, Evgeni M. Frenkel, Nouf N. Laqtom, Vimisha Dharamdasani, Caroline A. Lewis, Sze Ham Chan, Ivonne Heinze, Alessandro Ori, David M. Sabatini. Science 2018, eaar2663, DOI: 10.1126/science.aar2663. http://science.sciencemag.org/content/early/2018/04/25/science.aar2663?rss=1

Kontakt

Dr. Kerstin Wagner
Presse- und Öffentlichkeitsarbeit
Tel.: 03641-656378
E-Mail: presse@leibniz-fli.de


Hintergrundinformation

Das Leibniz-Institut für Alternsforschung – Fritz-Lipmann-Institut (FLI) in Jena widmet sich seit 2004 der biomedizinischen Alternsforschung. Über 330 Mitarbeiter aus 30 Nationen forschen zu molekularen Mechanismen von Alternsprozessen und alternsbedingten Krankheiten. Näheres unter http://www.leibniz-fli.de.

Die Leibniz-Gemeinschaft verbindet 93 selbständige Forschungseinrichtungen. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen. Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen – u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 19.100 Personen, darunter 9.900 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,9 Milliarden Euro (http://www.leibniz-gemeinschaft.de).

Weitere Informationen:

http://www.leibniz-fli.de - Webseite Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biogeografinnen testen Theorien über Biodiversität
15.05.2018 | Philipps-Universität Marburg

nachricht Duftstoff-Cocktail verrät Malaria
15.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Vom Computer massgeschneiderte regenerative Herzklappen

Herzfehler behandeln mit Prothesen, die wachsen und sich regenerieren – das ist das Ziel des kardiovaskulären Tissue Engineering. Gemeinsam haben nun Forschende der Universität Zürich, der Technischen Universität Eindhoven und der Charité Berlin zum ersten Mal erfolgreich regenerative Herzklappen bei Schafen eingesetzt, die mithilfe von Computersimulationen designt wurden.

Lebende Gewebe oder Organe im Labor auf der Basis menschlicher Zellen herzustellen, ist eines der zentralen Forschungsgebiete der Regenerativen Medizin. Der...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Licht-induzierte Supraleitung unter hohem Druck

Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben die licht-induzierte Supraleitung im Alkali-dotierten Fullerid K3C60 unter hohem, extern angelegtem Druck untersucht. Auf der einen Seite erlaubt diese Studie, die Natur des transienten Zustandes eindeutig als supraleitende Phase zu bestimmen. Darüber hinaus enthüllt sie die Möglichkeit, Supraleitung in K3C60 bei Temperaturen weit oberhalb der zuvor hypothesierten -170°C, sogar bis hinauf zur Zimmertemperatur, zu induzieren. Das Manuskript von Cantaluppi et al. wurde in Nature Physics veröffentlicht.

Im Gegensatz zu gewöhnlichen Metallen besitzen Supraleiter die einzigartige Fähigkeit, elektrischen Strom ohne jegliche Verluste zu leiten. Technologische...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Zukunftsweisende Forschung und intelligente Technologien – Tag der offenen Tür am Bremer DFKI

14.05.2018 | Veranstaltungen

Deutsche Meeresforschung trifft sich in Kiel

14.05.2018 | Veranstaltungen

3. Internationale Konferenz: „Hybrid Materials and Structures 2018“ 18.-19. April 2018

14.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biogeografinnen testen Theorien über Biodiversität

15.05.2018 | Biowissenschaften Chemie

Überleben bei Hunger - Neuer Mechanismus für Zellerhalt entdeckt

15.05.2018 | Biowissenschaften Chemie

Ökosystemforschung: Wohin führen Störungen im System?

15.05.2018 | Ökologie Umwelt- Naturschutz

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics