Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überaktive Fresszellen könnten geistigen Verfall bei Alzheimer bewirken

30.06.2017

Forschende der Universität Zürich zeigen erstmals eine überraschende Wirkung von Fresszellen im Gehirn: Fehlt ihnen das Protein TDP-43, entfernen sie nicht nur die Alzheimer Plaques, sondern auch Synapsen. Vermutlich führt diese Synapsen-Entfernung zum Abbau von Nervenzellen bei Alzheimer und anderen neurodegenerativen Krankheiten.

Gemeinsam mit anderen neurodegenerativen Erkrankungen ist der Alzheimer-Krankheit, dass sich die kognitiven Fähigkeiten von Betroffenen laufend verschlechtern. Grund dafür ist der zunehmende Verlust von Synapsen, den Kontaktstellen der Nervenzellen, im Gehirn. Bei Alzheimer stehen bestimmte Eiweissfragmente, die β-Amyloid-Peptide, in Verdacht, das Absterben der Nervenzellen zu bewirken. Diese Proteinbruchstücke verklumpen und bilden die für die Krankheit charakteristischen Plaques.


Mikrogliazelle mit phagocytischen Strukturen (blaugrün), die Synapsen-Proteine enthalten (rot). (Bild: UZH)

Gefrässige Mikrogliazellen zerstören Gehirn-Synapsen

Nun zeigt Lawrence Rajendran vom Institut für Regenerative Medizin der UZH zusammen mit Forschenden aus Grossbritannien und den USA, dass funktionsgestörte Mikrogliazellen bei Alzheimer und anderen neurodegenerativen Krankheiten zur Zerstörung von Synapsen beitragen. Diese Fresszellen überwachen im Gehirn normalerweise die Funktion der Nervenzellen, indem sie während der Entwicklung überzählige Synapsen oder schädliche Proteinverbindungen entfernen. Ihre Rolle bei neurodegenerativen Erkrankungen ist bislang umstritten.

In einem ersten Schritt erforschten die Wissenschaftler, welche Auswirkung bestimmte Risikogene für Alzheimer auf die Produktion des β-Amyloid-Peptids haben. Doch in Neuronen fanden sie keinen Effekt. Dann untersuchten sie die Funktion dieser Risikogene in Mikrogliazellen – und wurden fündig: Schalteten sie in den Fresszellen den genetischen Bauplan für das Eiweiss TDP-43 aus, beseitigten diese das β-Amyloid sehr effizient. Das Fehlen dieses Proteins führte bei den Mikrogliazellen zu einer gesteigerten Fressaktivität, Phagocytose genannt.

Das Protein TDP-43 reguliert die Aktivität der Fresszellen

Im nächsten Schritt verwendeten die Forschenden Mäuse, die als Krankheitsmodell für Alzheimer dienen. Auch hier schalteten sie in den Mikrogliazellen TDP-43 aus und beobachteten wiederum, dass die Zellen das β-Amyloid verstärkt beseitigten. Überraschenderweise führte die gesteigerte Fressaktivität der Mikrogliazellen in den Mäusen zugleich zu einem signifikanten Verlust an Synapsen. Und sogar bei Mäusen, die kein menschliches Amyloid produzieren, zeigte sich diese Synapsen-Zerstörung.

Alterungsprozesse im Hirn, so die Vermutung der Wissenschaftler, könnten ähnliche Effekte auslösen. «Möglicherweise bewirkt der Nährstoffentzug oder eine Art ‹Hunger-Mechanismus› während des Alterns eine gesteigerte Phagocytose-Aktivität der Mikrogliazellen, was zum Abbau von Synapsen führt», schätzt Lawrence Rajendran

Direkte Rolle in der Neurodegeneration

Die Ergebnisse zeigen, dass die Rolle der Mikrogliazellen bei neurodegenerativen Erkrankungen wie Alzheimer unterschätzt wurde. Sie beschränkt sich nicht, wie bisher angenommen, auf die Beeinflussung des Krankheitsverlaufs durch Entzündungsreaktionen und der Freisetzung von neurotoxischen Molekülen. Stattdessen können sie aktiv die Degeneration von Nervenzellen verursachen. «Fehlfunktionen der Mikrogliazellen dürften ein wichtiger Grund sein, weshalb viele Alzheimer-Medikamente in klinischen Versuchen zwar die Amyloid-Plaques reduzierten, bei den Patienten aber zu keiner Verbesserung der kognitiven Funktionen führten», sagt Rajendran.

Diese Arbeit wurde finanziert vom Schweizerischen Nationalfonds, der Velux Stiftung, der Stiftung Synapsis, des Cure Alzheimer Fund und dem Forschungskredit der Universität Zürich.

Literatur:
Rosa C. Paolicelli, Ali Jawaid, Christopher M. Henstridge, Andrea Valeri, Mario Merlini, John L. Robinson, Edward B. Lee, Jamie Rose, Stanley Appel, Virginia M.-Y. Lee, John Q. Trojanowski, Tara Spires-Jones, Paul E. Schulz, and Lawrence Rajendran. TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron. 29 June 2017. doi:.1016/j.neuron.2017.05.037

Kontakt:
Prof. Dr. Lawrence Rajendran
Institut für Regenerative Medizin
Universität Zürich
Tel. +41 44 634 88 60
E-Mail: lawrence.rajendran@irem.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Mikroglia-Alzheimer.html

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie