Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbolader für Nervenzellen

14.06.2013
Göttinger Max-Planck-Wissenschaftler haben einen Schlüsselmechanismus entdeckt, der die Signalleistung von Nervenzellen im Gehirn steigert

Im dichten Verkehr ein hupendes Auto lokalisieren, beim TV-Zappen zwischen Fußball und Krimi nicht völlig den Überblick verlieren oder am Ende eines gelesenen Satzes den Anfang nicht vergessen - das alles sind für uns ganz alltägliche Fähigkeiten.


An der Schalllokalisation beteiligte Synapsen (Calyx von Held) im Hirnstamm der Maus. Die grün gefärbten Bereiche sind Neurotransmitter freisetzende Synapsen. Die Empfängerzellen sind grau gefärbt. MPI f. experimentelle Medizin, Benjamin H. Cooper

Sie erlauben es uns, auf schnell wechselnde Umstände zu reagieren und selbst komplexe Tätigkeiten korrekt durchzuführen. Damit das funktioniert, müssen die Schaltkreise aus Nervenzellen in unserem Gehirn sehr flexibel sein. Einen wichtigen molekularen Mechanismus, der Nervenzellen zu solchen Anpassungskünstlern macht, haben jetzt Forscher der beiden Göttinger Max-Planck-Institute für experimentelle Medizin und biophysikalische Chemie unter der Leitung der Neurobiologen Nils Brose und Erwin Neher entdeckt.

Nervenzellen kommunizieren miteinander an spezialisierten Zell-Zell-Kontakten, den Synapsen. Zuerst wird eine sendende Nervenzelle erregt und schüttet Botenstoffe aus, so genannte Neurotransmitter. Diese Signalmoleküle gelangen dann zur Empfängerzelle und beeinflussen deren Aktivitätszustand. Der Prozess der Transmitterausschüttung ist hoch komplex und stark reguliert. Hauptakteure sind synaptische Vesikel, kleine von einer Membran umhüllte Bläschen, die mit Neurotransmittern beladen sind und diese durch Verschmelzung mit der Zellmembran freisetzen. Um jederzeit auf eine Stimulation mit der Freisetzung von Transmittern antworten zu können, muss eine Nervenzelle an jeder ihrer Synapsen eine bestimmte Menge schnell freisetzbarer Vesikel bereithalten. Die molekularen Grundlagen dieser Vorratshaltung ist seit Jahren Gegenstand der Forschungsarbeiten von Brose.

Dass es sich dabei nicht bloß um ein akademisches Problem handelt, erklärt Brose so: "Die Zahl der akut freisetzbaren Vesikel einer Synapse entscheidet über deren Zuverlässigkeit. Gibt es zu wenige davon und werden diese zudem noch zu langsam nachgeliefert, ermüdet die entsprechende Synapse bei dauerhafter Belastung sehr schnell. Das Gegenteil ist der Fall, wenn eine Synapse bei Belastung schnell weitere akut freisetzbare Vesikel nachliefern kann. Dann kann es sogar passieren, dass eine Synapse bei dauerhafter Aktivierung besser wird."

Diese Anpassungsfähigkeit von Synapsen ist in fast allen Nervenzellen zu beobachten. Sie wird als Kurzzeitplastizität bezeichnet und ist für eine Vielzahl extrem wichtiger Hirnprozesse unverzichtbar. Ohne sie könnten wir keine Geräusche lokalisieren, wäre Kopfrechnen unmöglich, und die Schnelligkeit und Flexibilität, mit der wir unser Verhalten ändern und unsere Aufmerksamkeit auf neue Ziele richten können, wäre dahin.

Brose und seine Mitarbeiter hatten bereits vor Jahren ein Protein mit dem kryptischen Namen Munc13 entdeckt, das nicht nur für die Nachlieferung akut freisetzbarer Vesikel an Synapsen unabdingbar ist, sondern zudem durch die Aktivität von Nervenzellen so reguliert wird, dass der Nachschub an Vesikeln dem jeweiligen Bedarf angepasst werden kann. Diese Regulation erfolgt durch einen Komplex aus dem Signalmolekül Calmodulin und Kalzium-Ionen, die sich bei starker Nervenzellaktivität in den Synapsen ansammeln.

"Unsere früheren Arbeiten an einzelnen Nervenzellen in Kulturschalen zeigten, dass der Kalzium-Calmodulin-Komplex Munc13 aktiviert und so dafür sorgt, dass akut freisetzbare Vesikel schneller nachgeliefert werden", so Noa Lipstein, eine israelische Gastwissenschaftlerin in Broses Labor. "Aber viele Kollegen waren nicht davon überzeugt, dass dieser Prozess auch in Nervenzellen im intakten Gehirn eine Rolle spielt."

Deshalb hat Lipstein zusammen mit ihrem japanischen Kollegen Takeshi Sakaba eine mutante Maus erzeugt, deren Munc13-Proteine genetisch so verändert sind, dass sie nicht mehr durch Kalzium-Calmodulin-Komplexe aktiviert werden können. Die Effekte dieser genetischen Manipulation untersuchten die beiden Neurophysiologen zunächst an Synapsen, die an der Schalllokalisation beteiligt sind und typischerweise mehrere hundert Mal pro Sekunde aktiviert werden. "Unsere Studie zeigt, dass die dauerhafte Leistungsfähigkeit von Synapsen in intakten Nervenzellnetzwerken auf kritische Weise von der Aktivierung von Munc13 durch Kalzium-Calmodulin-Komplexe abhängt", erläutert Lipstein.

Von der Bedeutung ihrer Studie sind die Göttinger Wissenschaftler überzeugt, denn schließlich wurden der für die synaptische Kurzzeitplastizität verantwortliche Kalziumsensor und dessen Zielprotein von führenden Neurowissenschaftlern in der Vergangenheit schon als 'Heiliger Gral' bezeichnet. "Ich gehe davon aus, dass wir einen molekularen Schlüsselmechanismus der Kurzzeitplastizität entdeckt haben, der in allen Synapsen im Gehirn eine Rolle spielt, und nicht nur in kultivierten Nervenzellen, wie viele Kollegen bisher glaubten", ist sich Lipstein sicher. Und wenn sie mit der Interpretation ihrer Befunde wirklich Recht behält, dann könnte Munc13 sogar ein ideales pharmakologisches Ziel für Medikamente sein, die die Gehirnleistung beeinflussen.

Originalpublikation:
Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca2+-Calmodulin-Munc13-1 signaling.
Lipstein, N., Sakaba, T., Cooper, B.H., Lin, K.-H., Strenzke, N., Ashery, U., Rhee, J.-S., Taschenberger, H., Neher, E. und Brose, N.
Neuron, 13. Juni 2013

Ansprechpartner:
Prof. Dr. Nils Brose
Max-Planck-Institut für experimentelle Medizin, Göttingen
Telefon: +49 551 3899-725
E-Mail: brose@­em.mpg.de

Dr. Noa Lipstein
Max-Planck-Institut für experimentelle Medizin
Telefon: +49 551 3899-697
E-Mail: lipstein@­em.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://­www.em.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics