Tumoren ordentlich einheizen

Vielleicht wird photothermische Tumortherapie durch Umgestaltung der Defektstruktur des Kristallgitters bald noch effektiver (c) Wiley-VCH

Nanostäbchen aus Bismutsulfid lassen Tumorzellen den Hitzetod sterben, wenn sie mit nahem Infrarot-Licht (NIR) bestrahlt werden. Chinesische Wissenschaftler machen diese Waffen jetzt noch leistungsstärker, indem sie die Defektstruktur des Kristallgitters durch winzige Goldpünktchen umgestalteten. Wie sie in der Zeitschrift Angewandte Chemie berichten, könnte dies ein Ausgangspunkt für eine effektivere photothermische Tumortherapie sein.

Bei der Photothermie wird ein Wirkstoff in den Tumor eingeschleust und diese Region mit NIR bestrahlt, einer Wellenlänge, die sehr tief in Gewebe eindringt, ohne es zu schädigen. Der Wirkstoff absorbiert das NIR und wandelt es in Wärme um.

Die Tumorzellen werden durch die lokale Überhitzung abgetötet, während gesundes Gewebe geschont wird. Besonders praktisch ist es, wenn der Wirkstoff gleichzeitig als Kontrastmittel für bildgebende diagnostische Verfahren dient, wie die Computertomographie (CT), mit deren Hilfe sich der Tumor lokalisieren lässt.

Nanomaterialien aus dem Halbleiter Bismutsulfid (Bi2S3) sind für diese Aufgaben gut geeignet. Forschern um Haiyuan Zhang von der Chinesischen Akademie der Wissenschaften (Changchun, Jilin, China) ist es nun gelungen, die Mechanismen, die den photothermischen Eigenschaften dieser Materialien zugrunde liegen, genauer aufzuklären.

Darauf aufbauend konnten sie die photothermische Effektivität von Bismutsulfid-Nanostäbchen weiter steigern, indem sie Nanodots („Nanopünktchen“) aus Gold auf die Oberfläche der Stäbchen aufbrachten.

Stark vereinfacht funktioniert das Ganze so: Licht kann bei Halbleitern negativ geladene Elektronen so anregen, dass sie in ein höheres Energieniveau, das Leitungsband, gelangen. Zurück bleiben positiv geladene „Löcher“.

Bei der Rekombination von Elektronen und Löchern wird wieder Energie frei, die an das Kristallgitter abgegeben wird und es in Schwingungen versetzt. Die Schwingungsenergie wird dann in Form von Wärme an die Umgebung abgegeben. Bestimmte Defekte im Kristallgitter, sogenannte tiefe Fallen, fördern diese Art der Elektronen-Loch-Rekombination.

In Bi2S3-Nanomaterialien, die unter Bi-Überschuss und S-Mangel synthetisiert werden, entstehen Schwefel-Fehlstellen und Substitutionen, bei denen ein Bi- ein S-Atom ersetzt. Beide können als tiefe Fallen wirken. Eine Erhöhung der Zahl tiefer Fallen oder ein verstärktes Einbringen von Elektronen in diese Fallen könnte also die photothermische Effizienz von Bi2S3-Nanomaterialien verbessern.

Hier kommen die Gold-Atome ins Spiel. Sie binden Schwefel-Atome und halten diese von ihren Gitterplätzen fern. So entstehen mehr Defekte. Außerdem bieten die Kontaktstellen zwischen Bi2S3 und Gold den angeregten Elektronen ein Energieniveau, über das sie leichter als auf direktem Weg auf das Energie-Niveau der Substitutionsfehlstellen kommen, sodass mehr Elektronen in diesen Typ „Falle“ gelangen.

Als Kontrastmittel für CT-Aufnahmen zeigten die Stäbchen Tumore in Mäusen sehr gut an, da sie sich bevorzugt in Tumorzellen anreichern. Das Tumorwachstum wurde mit der Gold-Version unter NIR-Bestrahlung deutlich stärker gehemmt als mit goldfreien Stäbchen.

Nach 14-tägiger Behandlung der Mäuse waren einige der Tumore sogar völlig verschwunden. Toxische Nebeneffekte und Beeinträchtigungen des umgebenden Gewebes wurden nicht beobachtet.

Angewandte Chemie: Presseinfo 50/2017

Autor: Haiyuan Zhang, Changchun Institute of Applied Chemistry Chinese Academy of Sciences (China), http://sourcedb.cas.cn/sourcedb_ciac_cas/en/ywrck/ywyjy/201403/t20140324_4073648…

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201710399

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

http://presse.angewandte.de

Media Contact

Dr. Karin J. Schmitz Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer