Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TUM-Wissenschaftler untersuchen 59 Tumor-Zelllinien - Typisches Proteinprofil von Tumorzellen entschlüsselt

08.08.2013
Wie wird aus einer unauffälligen Körperzelle eine Krebszelle? Welche Unterschiede sind dafür verantwortlich, dass sich Tumorzellen unkontrolliert teilen?

Bisher interessierten sich Forscher vor allem für Veränderungen in der DNA, dem Bauplan für die Proteine. Da es aber letztlich Proteine sind, die Körperzellen zu Tumorzellen umfunktionieren, haben Wissenschaftler jetzt das Proteom von 59 Tumorzelllinien entschlüsselt – und neue Erklärungsmöglichkeiten gefunden, warum Krebsmedikamente nicht bei allen Patienten gleich gut anschlagen.


Die Proteinsignaturen zeigen, wie empfindlich die untersuchten Tumor-Zelllinien (Kästchen von links nach rechts) auf zwei Wirkstoffe reagieren: auf das Chemotherapeutikum Taxol (oben) und auf den Kinase-Inhibitor Dasatinib (unterhalb der grauen Linie). Die erste Zeile zeigt die Reaktion – von blau nach rot: wenig bis sehr empfindlich; Zeilen darunter: Vorkommen der verschiedenen Proteine in den Zellinien: blau geringes, rot hohes Vorkommen. Bild: A. Gholami/TUM


Neben den 59 Tumor-Zelllinien im NCI-60-Panel verwenden Wissenschaftler viele andere Versuchszellen: hier Lungenkrebszellen der Zelllinie HCC827. Bild: K. Kramer/TUM

In der bislang größten Studie dieser Art identifizierten Wissenschaftler der Technischen Universität München (TUM) über 10.000 verschiedene Proteine in Krebszellen. „Nahezu alle Tumormedikamente richten sich gegen zelluläre Proteine“, sagt Prof. Bernhard Küster, Leiter des TUM-Lehrstuhls für Proteomik und Bioanalytik. „Wenn das Proteom, also das Proteinportfolio von Tumorzellen bekannt ist, steigen die Chancen, neue Angriffspunkte für Medikamente zu finden.“

Die Wissenschaftler untersuchten 59 Tumor-Zelllinien des National Cancer Institute (USA). Die unter dem Etikett „NCI-60“ geführten Zelllinien repräsentieren die häufigsten Tumorerkrankungen in neun Geweben (z.B. Gehirn, Brust, Darm, Haut, Blut). Sie werden von Krebsforschern auf der ganzen Welt für ihre Versuche genutzt. TUM-Bioinformatiker Dr. Amin Gholami: „Bisher war das Proteom der NCI-60-Zelllinen weitgehend unbekannt – dabei sind es die Proteine, die den Unterschied zwischen einer gesunden und einer Tumorzelle ausmachen.“

Proteine in Tumorzellen: Viele Gemeinsamkeiten – große Vielfalt

Die Wissenschaftler fanden mehr als 10.000 verschiedene Proteine in den NCI-60-Zelllinien. Über 5.000 davon kommen in unterschiedlicher Häufigkeit in Tumor-Zellinien aller Gewebearten vor. „Wir können davon ausgehen, dass es sich dabei um das Kernproteom von Krebs handelt“, so Küster. Zwischen den Tumorzellen verschiedener Gewebe zeigten sich aber auch klar unterscheidbare Proteinprofile – ein deutlicher Hinweis darauf, dass die Tumorzellen typische Eigenschaften gesunder Zellen des gleichen Gewebes aufweisen.

375 der rund 10.000 Proteine gehören zur Gruppe der Kinasen. Diese Proteine sind dafür zuständig, Signale weiterzuleiten, mit denen Zellen zum Beispiel ihren Stoffwechsel, die Zellteilung oder die Kommunikation mit anderen Zellen im Gewebe steuern. Die große Bandbreite verschiedener Kinasen im NCI-60-Bestand erklärt Tumorbiologe Dr. Zhixiang Wu so: „Anders als den gesunden Körperzellen stehen Tumorzellen viele Signalwege offen, um ihre Teilung zu aktivieren und ihr Überleben zu sichern.

Küster ergänzt: „Die Kinasen tragen dazu bei, dass Tumorzellen sich immer weiter vermehren. Ihre Vielfalt zeigt, wie unterschiedlich diese Mechanismen in menschlichen Krebserkrankungen sind – eine bedeutende Erkenntnis für die personalisierte Medizin.“

Wirksamkeit von Medikamenten abhängig vom Proteinmuster

Außerdem konnten die TUM-Forscher erstmals belegen, dass es vom Proteinmuster der Zellen abhängt, wie gut Krebsmedikamente wirken. „Wir haben untersucht, wie die Zelllinien auf insgesamt 108 verschiedene Krebsmedikamente reagieren. Tatsächlich gibt es Proteine, die Auskunft geben, ob eine Zelle auf bestimmte Therapeutika anspricht – oder resistent dagegen ist“, sagt Dr. Hannes Hahne, TUM-Experte für massenspektrometrische Verfahren. Als Beispiel nennt er das Protein 14-3-3 zeta/delta, das im Verdacht steht, Resistenzen gegen Krebsmedikamente zu vermitteln.

Die NCI-60-Proteom-Daten können Wissenschaftler in einer Datenbank abrufen. „Wir wollen damit einen Beitrag leisten, die Proteom-Forschung auf dem Gebiet von Krebserkrankungen weiter voranzubringen“, resümiert Küster. „Als nächstes werden wir das Proteom der ‚Cancer Cell Line Encyclopedia’ in Angriff nehmen, mit denen Pharmafirmen Wirkstoffe gegen Krebs testen.“

Publikation:
Global proteome analysis of the NCI-60 cell line panel; Amin Moghaddas Gholami, Hannes Hahne, Zhixiang Wu, Florian Johann Auer, Chen Meng, Mathias Wilhelm and Bernhard Kuster, Cell Reports Volume 4, 2013, doi: 10.1016/j.celrep.2013.07.018

Weitere Informationen:

Link zur Datenbank: http://wzw.tum.de/proteomics/nci60

Pressemitteilung "Meilenstein für die Entschlüsselung des menschlichen Proteoms":

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30911/

Weltweite Krebsstatistik: http://onlinelibrary.wiley.com/doi/10.3322/caac.20107/abstract

Kontakt:
Technische Universität München
Lehrstuhl für Proteomik und Bioanalytik
Prof. Dr. Bernhard Küster
T: +49 8161 71-5697
E: kuster@tum.de
W: http://www.weihenstephan.de/bt/
Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Campus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten), Mumbai (Indien) und São Paulo (Brasilien) vertreten.

Barbara Wankerl | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30995

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics