Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Terahertz goes Nano: Hochauflösende Terahertz-Nahfeld-Mikroskopie

16.06.2015

Terahertz-Wellen stoßen aufgrund ihrer großen Wellenlänge an Grenzen, wenn es um die Erkennung kleinster Strukturen geht. Die Kopplung von Terahertz-Wellen mit einem Nahfeld-Mikroskop ermöglicht es, die laterale Auflösung bis in den Nanometerbereich zu erhöhen.

Im Auftrag des Nahfeld-Mikroskop-Herstellers Neaspec GmbH hat Fraunhofer IPM ein Terahertz-System entwickelt, welches in Kombination mit deren Nahfeldmikroskop eine räumliche Auflösung im Bereich von 30 Nanometer erreicht. Die Neaspec GmbH stellte die Ergebnisse auf der »German THz Conference 2015« vom 8. bis 10. Juni in Dresden vor.


High-End-Geräte für Terahertz-Nahfeld-Messungen eröffnen neue Perspektiven in der Materialforschung.

Bildquelle © Neaspec GmbH

Terahertz-Wellen haben im Vergleich zum sichtbaren Licht eine recht große Wellenlänge (um die 300 Mikrometer). Das begrenzt leider die laterale Auflösung von Terahertz-Messungen im Fernfeld auf rund 150 Mikrometer. Für die Materialforschung reicht diese Messgenauigkeit oftmals nicht aus.

Die Analyse kleinskaliger Materialverteilungen, beispielsweise in Halbleiterkomponenten, erfordert räumliche Auflösungen im Nanometermaßstab. Die Lösung ist die Terahertz-Messung im Nahfeld.

Terahertz-Nahfeld-Mikroskopie: Auflösungen bis unter 30 Nanometer

Durch die Kombination von Terahertz-Wellen mit einem Streulicht-Nahfeldmikroskop lässt sich die natürliche Auflösungsgrenze im Fernfeld überwinden. Dies eröffnet ganz neue Möglichkeiten für die Terahertz-Spektroskopie in der Materialforschung, zum Beispiel bei der Qualitätskontrolle industriell hergestellter Halbleiterkomponenten.

Bei voller spektraler Auflösung im Terahertz-Bereich konnten mit dem von Fraunhofer IPM entwickelten System materialsensitive Aufnahmen gewonnen werden, die eine räumliche Auflösung besser als 30 nm zeigen. Dies ist weniger als ein Tausendstel der verwendeten Wellenlänge.

Im Vergleich zu Infrarot-Messungen ermöglicht der Einsatz von Terahertz-Wellen eine um das Hundertfache gesteigerte Sensitivität, beispielsweise, wenn es um die Messung der Leitfähigkeit von Halbleitermaterialien geht. Eine solch hohe Sensitivität ist mit anderen Technologien der optischen Mikroskopie kaum zu erzielen.

Bis heute gibt es kein Messverfahren, das eine qualitative Erfassung von Material- und Ladungsträgerkonzentrationen in nanometergenauer Auflösung erlaubt. Die Möglichkeit, Ladungsträger zu erkennen und zu quantifizieren, eröffnet ein großes Anwendungspotenzial für die Terahertz-Nahfeld-Mikroskopie.

In der physikalischen Grundlagenforschung wird die kontaktlose, nicht-invasive und quantitative Erfassung mobiler Ladungsträger mit nanometergenauer Auflösung wichtige Einblicke in offene Fragenstellungen geben, zum Beispiel auf dem Gebiet der Supraleiter, der »low-dimensional conductors« oder der »correlated conductors«.

In der Analytik könnte sich die »Terahertz-Nanoscopy« zu einem interessanten Werkzeug für chemische und strukturelle Analysen von Verbindungen und biologischen Systemen entwickeln, da sich Terahertz-Wellen sehr sensitiv gegenüber Vibrationen von Kristallstrukturen und Molekülen erweisen.

Hier zeigt die Terahertz-Spektroskopie im Vergleich zur Raman- und IR-Spektroskopie eine besonders hohe Sensitivität hinsichtlich Strukturänderungen auf. So ist es unter anderem möglich, verschiedene Hydratzustände und Isomere zu unterscheiden.

Weitere Informationen:

http://www.ipm.fraunhofer.de
http://www.neaspec.com

Holger Kock | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten

Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten

18.01.2018 | Energie und Elektrotechnik