Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Tasche für Uran

12.02.2009
Konstruktion eines selektiv Uran bindenden Proteins

Die Verwendung von Uran als nuklearer Brennstoff und Waffenmaterial erhöht das Risiko, dass Menschen damit in Kontakt kommen. Die Lagerung radioaktiver Uranabfälle stellt ein zusätzliches Umweltrisiko dar.

Bei einer Berührung mit Uran ist dessen Radioaktivität aber nicht das einzige Problem: Für die menschliche Gesundheit ist die Toxizität dieses Metalls im Allgemeinen noch gefährlicher. Die Forschung sucht noch nach einfachen, effektiven Methoden für eine sensitive Detektion und eine wirkungsvolle Therapie bei Uranvergiftungen. Wissenschaftler um Chuan He von der University of Chicago und dem Argonne National Laboratory (USA) haben nun ein Protein entwickelt, das Uran selektiv und stark bindet. Wie sie in der Zeitschrift Angewandte Chemie berichten, basiert es auf einem bakteriellen nickelbindenden Protein.

Uran liegt in sauerstoffhaltiger, wässriger Umgebung normalerweise als Uranyl-Kation vor (UO22+), ein lineares Molekül aus einem Uranatom und zwei endständigen Sauerstoffatomen. Das Uranylion geht zusätzlich gern Komplexbindungen ein. Bevorzugt umgibt es sich mit bis zu sechs Liganden, die sich in einer Ebene um seinen "Äquator" anordnen. Der Ansatz des Forscherteams bestand nun darin, ein Protein zu entwerfen, das dem Uranyl eine Bindungstasche bietet, in der es in der bevorzugten Weise von Seitengruppen des Proteins als Liganden umfangen wird.

Als Vorlage diente den Wissenschaftlern das Protein NikR (nickel responsive repressor) aus E. coli, ein auf Nickelionen reagierender Regulator. Wenn NikR mit Nickelionen beladen ist, bindet es an eine spezielle DNA-Sequenz. Dadurch wird die Ablesung der benachbarten Gene unterbunden, die für Proteine kodieren, die an der Nickelaufnahme beteiligt sind. Ist kein Nickel in der Coli-Bakterie vorhanden, bindet NikR nicht an die DNA.

Das Nickelion befindet sich in einer Bindungstasche, in der es in einer quadratisch-planaren Anordnung von bindenden Gruppen des Proteins umgeben ist. Mit einigen Mutationsschritten entwickelten die Forscher daraus ein Protein, das statt Nickel Uranyl in die Zange nehmen kann. Nur drei Aminosäuren mussten dazu verändert werden. Das Uranyl wird in der speziell konstruierten Bindungstasche nun von sechs Bindungspartnern umfangen, die das Uranylion äquatorial umgeben. Außerdem bietet die Tasche Platz für die beiden Sauerstoffatome des Uranyl.

Diese NikR-Mutante bindet nur in Gegenwart von Uranyl an die DNA, nicht aber in Anwesenheit von Nickel oder anderen Metallionen, was seine Selektivität für Uranyl beweist. Das Konzept könnte für eine Detektion von Uranyl und für eine biologische Dekontaminierung nuklearer Abfälle genutzt werden. Es ist ein erster Schritt zur Entwicklung protein- oder peptidbasierter Wirkstoffe zur Behandlung von Uranvergiftungen.

Angewandte Chemie: Presseinfo 06/2009

Autor: Chuan He, University of Chicago (USA), http://chemistry.uchicago.edu/fac/he.shtml

Angewandte Chemie, doi: 10.1002/ange.200805262

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://chemistry.uchicago.edu/fac/he.shtml
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE