Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Tarn-Trick der tödlichen Gabunviper

16.05.2013
Die Westafrikanische Gabunviper kann nicht nur Beutetiere von der Größe eines Stachelschweins verschlingen: Manche Teile ihres Schuppenkleids verschlucken das einfallende Licht nahezu vollständig; sie erscheinen „ultraschwarz“.

Wissenschaftler der Universitäten Kiel und Bonn haben nun herausgefunden, wie dieser Effekt zustande kommt. Ursache sind demnach mikroskopisch kleine Strukturen, die das Reflexionsvermögen der schwarzen Schuppen drastisch herabsetzen. Sie sorgen dafür, dass die hochgiftige Schlange auf dem schattigen Waldboden kaum zu erkennen ist. Die Ergebnisse erscheinen nun in „Scientific Reports“.


Gabunviper: Die Schlange verfügt über eine auffällige Zeichnung.
(c) Foto: Guido Westhoff/Tierpark Hagenbeck Hamburg


Gabunviper: In ihrer natürlichen Umgebung kann sich das Tier perfekt tarnen.
(c) Foto: Guido Westhoff/Tierpark Hagenbeck Hamburg

Gabunvipern sind Lauerjäger: Sie warten im schattigen Laub, bis ihnen ein Beutetier nahe genug kommt. Dann beißen sie blitzschnell zu und injizieren ihr tödliches Gift. Dabei hilft ihnen, dass sie sich kaum vom strukturreichen Waldboden abheben. Ihre regelmäßige weiß-braun-schwarze Musterung macht sie nahezu unsichtbar. Das liegt auch daran, dass die schwarzgefärbten Stellen das Licht geradezu verschlucken: Sie glänzen nicht wie bei vielen anderen dunklen Schlangen, sondern erscheinen matt wie tiefschwarzer Samt. Dieser Effekt ist unabhängig von der Blickrichtung.

Für die erfolgreiche Tarnung sind gerade diese ultraschwarzen Partien enorm wichtig. Schließlich reflektiert auch die Umgebung der Schlange das Licht unterschiedlich stark: Neben spiegelnden Blättern liegen rauhe Steinchen; dann wieder wird der mattschwarze Erdboden sichtbar. Ein Objekt mit konstanten Reflexionseigenschaften würde zwangsläufig auffallen – unabhängig von seiner Musterung. Die mattschwarze Zeichnung löst dagegen die Körperumrisse der bis zu 1,8 Meter langen Schlange perfekt auf.

Für die Schwarzfärbung der Schuppen sorgt dabei ein eingelagertes Pigment. Es erklärt aber nicht den „Samt-Effekt“. Dessen Ursache offenbart sich erst bei zwanzigtausendfacher Vergrößerung: „Die schwarzen Schuppen tragen einen Rasen aus blattartigen Erhebungen“, erklärt die Hauptautorin der Studie Dr. Marlene Spinner von der Christian-Albrechts-Universität zu Kiel (CAU). „Diese Blätter wiederum sind mit zahlreichen kleinen Rippen überzogen.“ Unter dem Elektronenmikroskop ähnelt das Ganze einem komplizierten Fingerabdruck.

Schlangenhaut mit Gold bedampft

Diese Kombination ultrafeiner Strukturen scheint für den Lichtschluck-Effekt verantwortlich zu sein. Dafür spricht auch eine Beobachtung, die die Forscherin bei ihren Untersuchungen gemacht hat: Für die elektronenmikroskopischen Aufnahmen hat sie die Schlangenhaut mit einer extrem dünnen Goldschicht bedampft. Die hellen Schuppen bekamen dadurch einen metallischen Glanz. Die schwarzen blieben aber samtig schwarz. Das zeigt, dass der Effekt nicht auf auf das Farbpigment in den Schuppen zurückzuführen ist, denn das war ja nun vom Gold überdeckt. Die reflexionsmindernden Oberflächenstrukturen blieben dagegen trotz des dünnen Metallüberzugs erhalten.

Die Zoologin hatte 2010 in ihrer Promotion an der Universität Bonn damit begonnen, nach den Ursachen des Lichtschluck-Effekts zu fahnden – eine Arbeit, die sie dann später an der Universität Kiel fortführte. Zwar sind Mikrostrukturen auf der Haut bei Schuppenkriechtieren keine Seltenheit. Ein Beispiel sind etwa die Nano-Härchen, denen der Gecko sein Talent verdankt, noch an den glattesten Flächen hochzuklettern. Die ultraschwarze Färbung der Gabunviper ist aber äußerst ungewöhnlich – aus wissenschaftlicher Sicht Grund genug, dem Phänomen nachzuspüren.

Lichtschluckende Oberflächen sind aber auch für technische Anwendungen interessant, etwa für optische Instrumente oder als Auskleidung von Sonnenkollektoren. Die besten heute verfügbaren Materialien reflektieren noch deutlich weniger Licht als die ultraschwarzen Schuppen der Gabunviper. „Möglicherweise lassen sich diese Werkstoffe aber noch weiter optimieren, wenn man Strukturprinzipien von der Schlange übernimmt“, spekuliert Marlene Spinner.

Für die Gabunviper ist die samtschwarze Färbung überlebenswichtig. „Sie geht nicht aktiv auf die Jagd“, erklärt Dr. Guido Westhoff, der Spinners Arbeit betreut hat. „Stattdessen wartet sie oft über viele Stunden völlig unbewegt darauf, dass die Beute zu ihr kommt.“ Ohne eine gute Tarnung wäre diese Strategie wohl kaum vom Erfolg gekrönt. Außerdem könnte die Schlange auch leicht selbst von Fressfeinden entdeckt werden.

Wenn ihr ein Beutetier zu nahe kommt, ist es mit der Ruhe schlagartig vorbei: Der Kopf der Viper stößt mit bis zu 70 Stundenkilometern nach vorne; das Opfer hat so gut wie keine Chance zu flüchten.

Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros; Marlene Spinner, Alexander Kovalev, Stanislav N. Gorb & Guido Westhoff; SCIENTIFIC REPORTS (3) : 1846; DOI: 10.1038/srep01846

Kontakt:

Dr. Marlene Spinner
Zoologisches Institut der Christian-Albrechts-Universität zu Kiel
Telefon: 0431/880-4517
E-Mail: mspinner@zoologie.uni-kiel.de

Dr. Guido Westhoff
Zoologisches Institut der Universität Bonn und Tierpark Hagenbeck Hamburg
Telefon: 040/530033-333
E-Mail: gwesthof@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Frage der Dynamik
19.02.2018 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

nachricht Forscherteam deckt die entscheidende Rolle des Enzyms PP5 bei Herzinsuffizienz auf
19.02.2018 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics