Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

T-Zelltherapie bringt Fortschritte im Kampf gegen Krebs und Infektionskrankheiten

15.02.2016

T-Zelltherapie: Technische Innovationen der TUM rücken Heilmethoden in greifbarere Nähe

In den letzten Jahren haben die Bemühungen, Immuntherapien in den breiten klinischen Einsatz gegen Krebs und Infektionskrankheiten zu bringen, große Fortschritte gemacht. So brachten z.B. klinische Studien mit der sogenannten adoptiven T-Zelltherapie vielversprechende Ergebnisse.


Prof. Dirk Busch, Professor für Medizinische Mikrobiologie, Immunologie und Hygiene an der TUM, wandte mit Kollegen aus den USA und Italien T-Zelltherapien bereits erfolgreich in klinischen Studien an. (Foto: A. Eckert /TUM)

Drei führende Wissenschaftler auf diesem Gebiet berichteten am 14. Februar auf der Jahrestagung der American Association for the Advancement of Science (AAAS 2016) über ihre neuesten Fortschritte: Prof. Dirk Busch von der Technischen Universität München, Prof. Chiara Bonini vom San Raffaele Scientific Institute, und Prof. Stanley Riddell vom Fred Hutchinson Cancer Research Center und der University of Washington.

Auf T-Zellen gründende Immunität entstand, um Krankheitserreger zu erkennen, zu bekämpfen, und um ein lebenslanges Gedächtnis aufzubauen, das vor wiederkehrenden Erkrankungen schützt. Bei chronischen Krankheiten werden allerdings reaktive T-Zellen oft inaktiv oder sie verschwinden sogar. Dank in jüngster Zeit gemachter Fortschritte ist aber nun die Idee, chronische Infektionen oder sogar Krebs zu bekämpfen, indem man dem Körper neue schützende T-Zellen zuführt, viel realistischer geworden.

Die adoptive T-Zelltherapie ist das Hauptthema des im Rahmen der AAAS 2016 stattfindenden Symposiums "Fighting Cancer and Chronic Infections with T Cell Therapy: Promise and Progress". Bei dieser Therapie erhält ein Patient Killer-Immunzellen, die genau die richtigen Moleküle angreifen, um seine Krankheit zu bekämpfen. Bisher standen einer breiten klinischen Anwendung verschiedene Hindernisse entgegen:

Das Finden und Züchten von T-Zellen – ob vom Patient oder von einem passenden Spender, die für den individuellen Krankheitsfall am effektivsten wirken. Die Vermeidung oder Bekämpfung möglicher Nebenwirkungen; und fehlende Methoden, um den Weg von der reinen Forschung in die klinische Anwendung zu verkürzen. Auf dem Symposium berichten die Forscher über Fortschritte in allen drei Punkten und präsentieren Daten von ersten klinischen Studien.

Wirksame Zellen mit Sicherheitsmechanismus

"Die Konkurrenz innerhalb der Wissenschaft ist groß und auch das Interesse der Industrie wächst“, sagt Prof. Dirk Busch. "Wir sind der Überzeugung, dass man vor allem die richtigen Ausgangszellen auswählen muss, um daraus optimale Zellprodukte für die Therapie herzustellen. Hierzu braucht man zusätzlich geeignete klinische Selektionsmethoden.

Über die letzten Jahren haben wir von der TUM zusammen mit Stan Riddell, sowie die Arbeitsgruppe von Chiara Bonini, daran gearbeitet, Zellprodukte bereitzustellen, die sich nach der Übertragung in Patienten stark vermehren und für lange Zeit – potentiell lebenslang – aktiv bleiben. Wir fanden eine T-Zell-Untergruppe mit einem hohen regenerativen Potential, bei der sogar eine geringe Zahl übertragener Zellen – in Extremfall eine einzige T-Zelle – eine therapeutische Immunantwort übertragen kann. Busch ergänzt, dass die Verwendung solch potenter Zellen nach Sicherheitsmechanismen verlangt, die mittlerweile ebenfalls entwickelt und demonstriert wurden.

Im Rahmen der Fokusgruppe für klinische Zellverarbeitung und -aufreinigung am TUM Institute for Advanced Study (TUM-IAS) haben Busch, Riddell und Kollegen bei der Suche nach Verfahren, mit denen definierte T-Zell-Untergruppen schnell für die klinische Anwendung selektiert werden können, Pionierarbeit geleistet.

Besonders interessant sind die sogenannten zentralen Gedächtnis-T-Zellen (TCMs): TCMs können nach dem Transfer vom Körper gut aufgenommen werden, sich vermehren und für lange Zeit bestehen, auch wenn nur wenige Zellen übertragen werden. TCMs können außerdem genetisch so verändert werden, dass sie Rezeptoren für neuartige Antigene aufweisen, ohne dass sich dies auf ihr in vivo Verhalten auswirkt.

Erste klinische Versuche mit genveränderten T-Zellen, die so genannte chimäre Antigenrezeptoren exprimieren und damit Antigene für die B-Zell-Leukämie (anti-CD19-CAR) erkennen, lieferten herausragende Ergebnisse – einschließlich Fälle kompletter Remission von Blutkrebs im Endstadium. Auch klinische Versuche adoptiver T-Zelltherapien gegen chronische Infektionen verliefen vielversprechend.

Gleichzeitig arbeiten die Forscher an Sicherheitsvorkehrungen, die im Fall von Nebenwirkungen eine selektive Beseitigung der für die Therapie verwendeten, gentechnisch veränderten T-Zellen erlauben. Ein solcher Sicherheitsmechanismus wurde erfolgreich in vorklinischen Studien an Tiermodellen getestet und bereits auf Patienten übertragen.

„Wir statten die T-Zellen mit einem Marker aus. So können wir einen Antiköper verabreichen, der ausschließlich an die Zellen bindet, die wir gentechnisch verändert haben“, erklärt Busch. „Wenn der Antikörper an eine Zelle bindet, dann werden Immunreaktionen angestoßen, die diese Zelle beseitigen. Wir nennen das Antiköper-vermittelte Zelltoxizität.“

Insgesamt besteht das Ziel darin, einheitliche und möglichst gut definierte therapeutische Zellprodukte herzustellen und mit Sicherheitsmechanismen auszustatten, damit die adoptive T-Zelltherapie für die Behandlung verschiedener Patienten und Erkrankungen eingesetzt werden kann – auf individueller Basis. "Wir glauben, dass das klinische Ergebnis umso vorhersagbarer sein wird, je besser definiert unsere Zellprodukte sind“, sagt Busch.

Die Technologie-Entwicklung an der TUM hat zur Bildung eines Spin-Off Unternehmens STAGE Cell Therapeutics geführt, das kürzlich mit dem in Seattle angesiedelten Juno Therapeutic fusionierte. Das in München angesiedelte Unternehmen bildet jetzt den europäischen Arm von Juno Therapeutics.

Teile dieser Forschungen wurden von der Deutschen Forschungsgemeinschaft (DFG), dem TUM Institute for Advanced Study, und von Juno Therapeutics gefördert.

Weitere Informationen:

AAAS 2016 Symposium "Fighting Cancer and Chronic Infections with T Cell Therapy: Promise and Progress"
https://aaas.confex.com/aaas/2016/webprogram/Session12231.html

AAAS Annual Meeting 2016 - Programm
http://meetings.aaas.org/program/

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32936/ - Diese Meldung im Web
http://www.tum.de/die-tum/aktuelles/ - Alles Pressemeldungen der Technischen Universität München
http://www.tum-ias.de/focus-groups/current-focus-groups/clinical-cell-processing... - Fokusgruppe für klinische Zellverarbeitung und -aufreinigung am TUM-IAS

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie