Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

T-Zellen im Trainingslager - Wie uns Zellabfall vor dem Immunsystem schützt

13.08.2008
Die T-Zellen des Immunsystems sind entscheidend an der Bekämpfung von Viren und Bakterien beteiligt.

Sie reagieren allerdings nur auf fremde Proteinschnipsel, die ihnen an der Oberfläche von Immunzellen präsentiert werden. Wichtig ist dabei, dass sie keine körpereigenen Strukturen angreifen.

Wie ein Team von LMU-Immunologen unter der Leitung von Professor Ludger Klein nun im Mausmodell zeigen konnte, wird für das entsprechende Training der T-Zellen ein aus anderem Zusammenhang bekannter Mechanismus ausgeliehen: Bei der Autophagie werden Zellbestandteile zerlegt und recycelt, etwa um dem Körper Energie zuzuführen.

Die neuen Arbeiten deuten daraufhin, dass dieser Mechanismus in der Thymusdrüse, einer Art "T-Zell-Schule", zweckentfremdet wird, um die dadurch entstehenden Zellbruchstücke für heranreifende T-Zellen sichtbar zu machen. So wird den T-Zellen ein immunologisches Spiegelbild aller Proteine des Organismus präsentiert. T-Zellen, die auf diese Strukturen reagieren, werden vernichtet, bevor sie die Blutzirkulation erreichen - und ein Angriff auf körpereigene Proteine wird verhindert.

"Das Immunsystem der Mäuse, bei denen wir die Autophagie im Thymus gezielt unterbunden haben, ist regelrecht entgleist", sagt Klein. Die T-Zellen der Tiere wanderten in einzelne Organe und griffen diese an. Schwere Darmentzündungen und massive Schäden an der Leber, Lunge, Haut und dem Uterus waren die Folge. "Entsprechende Autoimmunerkrankungen treten auch beim Menschen auf", erklärt Klein. "Wir können nun neue Arbeitshypothesen zur Entstehung dieser Leiden formulieren." (Nature, 13.8.2008)

Alte und fehlgefaltete Proteine werden durch die sogenannte Autophagie ("sich selbst essen") recycelt. Bei Nährstoffmangel wird dieser Prozess angeschaltet, um Zellstrukturen zu zerhäckseln und dadurch dem Körper Brennstoffe zur Energiegewinnung zu liefern. Ansonsten kommen die Zellen des Körpers nach vorherrschender Meinung aber nur selten in die Verlegenheit, ihre eigenen Bestandteile abzubauen.

Nach den Ergebnissen der vorliegenden Studie aber erfüllt die Autophagie tatsächlich noch eine weitere und außerordentlich wichtige Funktion: Sie schützt uns vor unserem eigenen Immunsystem. Wie das Team um Klein zeigen konnte, kapern die Epithelzellen der Thymusdrüse diesen Mechanismus, um heranreifenden T-Zellen mit Hilfe der Bruchstücke alle Proteine des Körpers zu präsentieren. Dann können T-Zellen in den Zelltod geschickt werden, die nicht auf Viren und Bakterien, sondern auf körpereigene Strukturen reagieren.

Diese Untersuchung wurde im Tiermodell durchgeführt. Doch gibt es bereits erste Hinweise, dass dieselben Mechanismen auch im Menschen wirksam sind. So wurde vor kurzem in zwei unabhängigen Studien gezeigt, dass eine genetische Verbindung zwischen einer Autophagie-Komponente und der entzündlichen Darmerkrankung Morbus Crohn besteht - einem Autoimmunleiden.

Der molekulare Zusammenhang ist allerdings noch nicht geklärt. Ausgangspunkt der unter Kleins Federführung entstandenen Studie, die bereits am Institut für Molekulare Pathologie in Wien begonnen wurde, waren Ergebnisse eines Kooperationspartners, Professor Noboru Mizushima, von der Tokyo Medical and Dental University. Er hatte gezeigt, dass in den Epithelzellen des Thymus als einzigem Gewebetyp des Körpers auch ohne Hunger - also ohne erhöhten Energiebedarf - eine konstant hohe Rate von Autophagie nachweisbar ist.

"Wir wissen bereits seit fast zehn Jahren, dass eben diese Zellen bei der Entschärfung autoreaktiver T-Zellen, die also körpereigene Strukturen angreifen würden, wichtig sind", berichtet Klein. "Damals entdeckten wir mit Kollegen in Heidelberg, dass die thymischen Epithelzellen durch einen immer noch rätselhaften Mechanismus in der Lage sind, praktisch jedes Protein des Körpers zu produzieren. Unklar war jedoch, wie es ihnen gelingt, die für die Erziehung von T-Zellen wichtigen Proteinschnipsel, sogenannte Epitope, auf ihrer Oberfläche zu präsentieren." Denn T-Zellen reagieren nicht auf freischwimmende Fremdkörper in den Körperflüssigkeiten, sondern erkennen mit Hilfe ihres T-Zell-Rezeptors nur in sogenannte MHC II-Moleküle eingebettete Proteinbruchstücke.

"Erstaunlicherweise bekommt praktisch jede unserer Millionen von T-Zellen im Thymus per Zufallsprinzip einen anderen T-Zell-Rezeptor, so dass das Immunsystem fast jeden Krankheitserreger erkennen kann", erklärt Klein. "Allerdings entstehen so auch Rezeptoren, die auf körpereigene Proteinbruchstücke reagieren würden." Diese dürfen den Thymus nicht verlassen, da sonst Autoimmunkrankheiten wie Typ 1 Diabetes, Multiple Sklerose und Rheumatoide Arthritis entstehen können. Sie müssen frühzeitig getestet, aussortiert und unschädlich gemacht werden. Dafür sind die thymischen Epithelzellen zuständig. Bei jeder T-Zelle, die durch sie aktiviert wird, soll Apoptose, der programmierte Zelltod, ausgelöst werden.

Allerdings sollte eine thymische Epithelzelle nach vorherrschender Lehrmeinung diese Funktion gar nicht erfüllen können. Denn eingebettet in ihre MHC II-Moleküle dürfte sie keine Proteinschnipsel präsentieren, die sie selbst produziert hat - dieser Platz ist bei den Zellen des Immunsystems normalerweise für fremde Antigene reserviert. Um körpereigene Eiweißschnipsel dorthin zu schleusen, brauchen die Epithelzellen des Thymus die zweckentfremdete Autophagie, meinen die Forscher um Ludger Klein. Der Prozess ermöglicht vermutlich den Epithelzellen, die körpereigenen Proteine entsprechend klein zu häckseln und sie letztlich auf der Oberfläche den T-Zellen zu präsentieren.Dies zumindest legen die nun veröffentlichten Ergebnisse nahe.

Im entscheidenden Experiment schalteten die Forscher gezielt den Mechanismus der Autophagie in den thymischen Epithelzellen aus. "Nach fünf Wochen sah man bereits mit bloßem Auge, dass es den veränderten Mäusen nicht gut ging", sagt Jelena Jedjic, eine Koautorin der Studie. "Die Haut der Tiere war schuppig, und sie hatten massiv an Gewicht verloren." Die immunologische Analyse der Organe zeigte drastisch die Auswirkungen der genetischen Veränderungen: T-Zellen hatten Blut und Lymphe verlassen, waren in Organe gewandert und hatten dort Gewebeschäden verursacht.

"Allerdings wissen wir nicht, warum sie nur einzelne Organe befallen haben", meint Klein. "Für uns war jedenfalls sehr interessant, dass vor allem der Darm so stark geschädigt wurde. Denn dieses Krankheitsbild erinnert stark an das menschliche Autoimmunleiden Morbus Crohn. Wir wollen jetzt klären, wie autoreaktive T-Zellen der Selektion im Thymus entkommen können, und wie sich eine defekte Autophagie im Thymus auswirken kann. Denn dies sollte zu einem besseren Verständnis der Autoimmunerkrankungen und möglicherweise auch zu Therapien führen."

Publikation:
"Autophagy in Thymic epithelium shapes T-cell repertoire and is essential for tolerance"
Ludger Klein et.al.
Nature, Advance Online Publication, DOI: 10.1038/nature07208
Ansprechpartner:
Professor Dr. Ludger Klein
Ludwig-Maximilians-Universität (LMU) München
Institut für Immunologie
Tel.: 089 / 2180 - 75696, Fax: 089 / 5160 - 2236
E-Mail: ludger.klein@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de
http://immuno.web.med.uni-muenchen.de/020_Research/025_AG_Klein/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie