Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Symbiotische Schwefelbakterien verlassen das sinkende Schiff

19.08.2015

Hydrothermale Quellen in Vulkankratern der Tiefsee sind schnell vergänglich. Am ostpazifischen Rücken entstehen und versiegen solche Quellen innerhalb weniger Jahre. Riesenröhrenwürmer finden neue Quellen extrem schnell, wachsen innerhalb eines Jahres mehr als einen Meter und sterben wenige Jahre danach. Dieses Schicksal teilen sie aber nicht mit ihren bakteriellen Symbionten, die tief im Inneren des Wirtskörpers leben. Wie ein internationales ForscherInnenteam unter der Leitung der Meeresbiologin Monika Bright von der Universität Wien entdeckte, verlassen die Schwefelbakterien ihren toten Wirt und vermehren sich im Freien.

Der Riesenröhrenwurm "Riftia pachyptila" lebt an warmen Quellen in der Tiefsee: Dicht gedrängt bei einer Anzahl von bis zu 2.000 Tieren pro Quadratmeter und in Symbiose mit Schwefelbakterien. "Erstaunlicherweise geben die Eltern die Symbionten nicht direkt an ihre Nachkommen weiter", so Monika Bright, Meeresbiologin am Department für Limnologie und Bio-Ozeanographie an der Universität Wien:


Lebende Röhrenwürmer an Hydrothermalquellen vier Jahre nach einem Vulkanausbruch.

Copyright: Monika Bright


Tote Röhrenwürmer vier Jahre nach einem Vulkanausbruch.

Copyright: Monika Bright

"Jede Larve muss ihre Symbionten aus der Umwelt aufnehmen. Einzelne Bakterien infizieren die Haut, ähnlich wie in manchen pathogenen Infektionen, und besiedeln das Innere des Wirtskörpers. Dort vermehren sie sich und erreichen im ausgewachsenen Wurm eine extrem hohe Dichte. Außerdem ernähren sie den darmlosen Wurm, der dadurch Wachstumsraten vergleichbar mit Krebszellen erreicht."

Im Rahmen des europäischen "Marie Curie - Initial Training Network" - Programms "Symbiomics" untersuchte Julia Klose in ihrer Dissertation an der Universität Wien, ob die Symbionten den Wirt auch wieder verlassen können, um die frei lebende bakterielle Population an den warmen Quellen anzureichern.

Dazu wurden während mehrerer Forschungsreisen mit amerikanischen und französischen Kooperationspartnern lebende Würmer aus 2.500 Metern Wassertiefe gesammelt. Das Team inkubierte Wurmgewebe mit lebenden Symbionten für mehrere Tage in speziellen Durchfluss-Hochdruckaquarien. Später in Wien wurden das tote Wirtsgewebe, das Inkubationswasser und die Kolonisationsoberflächen aus den Druckbehältern mit molekularen und mikroskopischen Methoden analysiert.

"In weniger als 24 Stunden verließen viele Symbionten den toten Wirt und besiedelten Oberflächen in den Hochdruckgefäßen – besonders faszinierend war es für uns, dass sich die Bakterien auf den Oberflächen stark vermehrten“, so Klose. Die WissenschafterInnen beobachteten, dass einer abgestorbenen Röhrenwurm-Aggregation nach Versiegen der Quelle zwischen mehreren Millionen und einer Milliarde Bakterien entweichen können.

"Unser Glück war es, dass kurz vor Beginn unserer Forschungen ein unterseeischer Vulkanausbruch am ostpazifischen Rücken, eine Tagesreise von Manzanillo, Mexiko, entfernt, stattgefunden hat. Dadurch konnten wir das Kommen und Gehen der Tiere über fünf Jahre hinweg genauestens verfolgen", erklärt Monika Bright, die seit 20 Jahren an den faszinierenden Würmern arbeitet. Nur neun Monate nach der totalen Auslöschung der Wurmpopulation durch den Vulkan waren die warmen Quellen wieder besiedelt, wobei die Lebensdauer vieler Würmer trotz erheblicher Größe weniger als zwei Jahre betrug. Dies führte zur vermehrten Freisetzung von Symbionten, die dann die nächste Wurmgeneration wieder infizieren konnten.

Publikation in "Proceedings of the National Academy of Science":
Klose J, Polz MF, Wagner M, Schimak MP, Gollner S, Bright M (2015): Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. In Proceedings of the National Academy of Science
doi: 10.1073/pnas.1501160112

Wissenschaftlicher Kontakt
Univ. Prof. Dr. Monika Bright
Department für Limnologie und Bio-Ozeanographie
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-764 30
monika.bright@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten