Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Symbiose statt Cellulose – Eine Sackgasse der Evolution

07.08.2012
Der Verlust von Genen markierte den Ursprung einer seither stabilen symbiotischen Beziehung
Pilze der Gattung Amanita verloren Gene mit denen sie zuvor in der Lage waren Cellulose abzubauen und gingen eine enge Bindung mit Bäumen ein. Die Pilze verloren demnach ihre holzzersetzende Funktion und wurden dadurch von der Nährstofflieferung des Wirts abhängig. Das faszinierende an dieser Evolution: Es gibt keinen Weg zurück.

Viele eukaryotische und prokaryotische Mikroorganismen gehen eine Symbiose mit Pflanzen ein. Auch einige Pilzarten der weltweit verbreiteten Gattung Amanita. Von den über 500 Arten sind einige essbar, die Gattung ist aber vor allem für seine giftigen Arten bekannt; Darunter unter anderem der Fliegenpilz (Amanita muscaria var. muscaria).

Die meisten Arten dieser Gattung gehen eine mutualistische Symbiose mit Bäumen ein; andere wenige sind saprotroph, d.h. sie ernähren sich durch den Abbau organischer Verbindungen. Im Laufe der Evolution bildeten sich demnach aus den autark lebenden Pilzen auch Arten heraus, die auf die Nährstoffversorgung von Bäumen angewiesen sind. Diese gehen eine Symbiose mit den Wurzeln von Bäumen ein, ohne dabei jedoch in die Zellen des Wirts einzudringen - eine sogenannte Ektomykorrhiza. Doch wie genau kam es zu dieser Entwicklung?

Die Evolution der Gene
Die Forscher extrahierten DNA aus gesammelten Proben von über 100 Amanita-Arten, um den Ursprung der Symbiose - durch mögliche genetische Veränderungen in der Evolution der Gattung - zu untersuchen. Dafür erstellten sie einen phylogenetischen Stammbaum, bei dem sie sich auf vier Gene konzentrierten und deren Entwicklung in den verschiedenen Arten nachzeichneten. Anhand dieser Daten konnten sie nun die Verwandtschaftsbeziehungen der verschiedenen Arten genau nachverfolgen. Zur Klärung der Verwandtschaftsverhältnisse griffen die Forscher auf die Methode der Polymerase-Kettenreaktion (PCR) zurück, bei der DNA-Sequenzen künstlich vervielfältigt werden.

Im nächsten Schritt verglichen sie saprotrophe mit symbiotisch lebenden Arten und entdeckten dabei den genetischen Ursprung der Ektomykorrhiza-Symbiose: Ein Genverlust markierte den Beginn der wechselseitigen Beziehung.

Irreversibler Verlust von Funktionen
Im Genom der Pilze kodieren drei Gene Enzyme, die für den Abbau von organischem Material verantwortlich sind. Bei ihren Untersuchungen entdeckten die Forscher, dass die Pilzarten, die zur Ektomykorrhiza fähig sind, mindestens zwei von diesen drei Genen, verloren hatten. Die Gene befähigen die Pilze Cellulose, einen Hauptbestandteil pflanzlicher Zellwände, in Zucker umzuwandeln. Daraus gewinnen die Pilze u.a. Kohlenstoff. Ohne diese Abbauwege sind die Pilze auf eine andere Nährstoffversorgung angewiesen - Die Pilze sind demnach vollends vom Wirt abhängig. Das bedeutet, dass die Pilzarten, die eine symbiotische Beziehung zu Pflanzen eingehen nicht wieder autark wachsen können.

Experimente beweisen die Abhängigkeit
Um ihre Hypothese zu untermauern, testeten die Forscher, ob verschiedene Arten auf einem Untergrund wachsen würden, der keine Möglichkeit zur Symbiose bot. Dabei wurden zwei saprotrophe Arten und eine symbiotisch lebender Pilz verwendet. Die zwei saprotrophe Arten wuchsen ganz gewöhnlich, wohingegen der symbiontische Pilz nicht fähig war auf dem Untergrund zu wachsen.

Das Experiment bewies: Die Pilze, die einmal eine Symbiose eingehen haben die Fähigkeit verloren, in Böden zu überleben ohne Kohlenstoff durch eine Wirtspflanze geliefert zu bekommen. Die Ergebnisse legen nahe, dass der Verlust jener Fähigkeit für die Stabilität dieser allgegenwärtigen mutualistischen Symbiose verantwortlich ist.

Unklar ist bisher allerdings, ob der Genverlust die Voraussetzung oder die Folge der mutualistischen Symbiose (Ektomykorrhiza) war. Der Vergleich mit anderen symbiotisch lebenden Organismen ist nötig, um weiterführende Informationen über die zugrundeliegenden Mechanismen von Genverlusten und dem Übergang zur Symbiose zu liefern.

Quelle:
Wolfe B.E., Tulloss R.E., Pringle A. (2012): The Irreversible Loss of a Decomposition Pathway Marks the Single Origin of an Ectomycorrhizal Symbiosis. In: PLoS ONE 7(7): e39597, online 18. Juli 2012, doi:10.1371/journal.pone.0039597

fe B.E., Tulloss R.E., Pringle A. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/symbiose-statt-cellulose-–-eine-sackgasse-der-evolution?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE