Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stopp und Go im Denkprozess

26.08.2008
Es gibt Nervenzellkontakte, die den Informationsfluss hemmen. Max-Planck-Wissenschaftler konnten nun klären, wie diese entstehen.

Die Anpassungsfähigkeit des Gehirns ist enorm: Ständig wachsen neue Informationsleitungen zwischen Nervenzellen aus und ungenutzte Verbindungen werden wieder abgebaut. So wird der Datenfluss kontinuierlich optimiert und neue Informationen und Eindrücke können verarbeitet werden. Doch das Durchdenken einer neuen Situation kann auch die zeitweilige Unterdrückung unwichtiger Informationen erfordern. Daher besitzt das Gehirn auch Nervenzellkontakte, die den Informationsfluss hemmen. Bislang war jedoch unklar, wie diese hemmenden Kontakte entstehen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben dies nun geklärt und fanden dabei erstaunliche Unterschiede zu den "herkömmlichen" Nervenzellverbindungen. (Nature Neuroscience, 24. August 2008)


Auch der Informationsfluss im Gehirn bekommt nicht nur grünes Licht. Wie hemmende Verbindungen zwischen Nervenzellen entstehen, zeigten nun Wissenschaftler des MPI für Neurobiologie. Bild: Max-Planck-Institut für Neurobiologie / Wierenga

Denken ist ein komplexer Prozess. Wie in einem riesigen Kabelnetz fließen Informationen von einer Nervenzelle zur Nächsten. Um die ständig eintreffenden neuen Informationen verarbeiten zu können, sind die Verbindungen sehr anpassungsfähig: Sobald wir etwas Neues sehen, erleben oder tun, wachsen neue Querverbindungen zwischen einzelnen Nervenzellen aus. Über diese neuen Verbindungen kann eine Information dann an die richtigen Zellen weitergegeben und somit verarbeitet werden.

Neue Datenleitungen durch flexible Fortsätze

Der Blick durchs Mikroskop zeigt, dass der Aufbau neuer Kontakte über winzige Fortsätze geschieht. Soll etwas Neues verarbeitet werden, wachsen auf den Verästelungen einer Nervenzelle, den sogenannten Dendriten, feine Fortsätze aus. Doch wie in einem Kabelknäuel reicht das reine Überkreuzen von Kabeln nicht aus, um Informationen auszutauschen. Trifft ein Fortsatz daher auf eine Nachbarzelle, die sich zur Verarbeitung der neuen Information eignet, so reift am Ende des Fortsatzes eine Synapse. Erst diese Kontaktstelle ermöglicht die Weitergabe der Informationen von einer Zelle zur nächsten. Ist die kontaktierte Zelle für den Austausch dagegen ungeeignet, zieht sich der Fortsatz wieder zurück.

Doch wie in jedem Kabelnetz käme es auch in den Nervenleitungen schnell zu Überlastungen, wenn die Datenübertragung nicht an manchen Stellen oder zu manchen Zeiten eingeschränkt würde. So gibt es neben den flexiblen Fortsatz-Kontakten, die den Datenaustausch fördern, andere Kontakte, die den Informationsfluss hemmen. Wie diese hemmenden Kontakte entstehen, war bislang jedoch völlig unklar.

Rotes Licht für den Informationsfluss

Während sich die informationsfördernden Synapsen an den Enden der auswachsenden Fortsätze befinden, sitzen hemmende Synapsen direkt auf dem "Schaft" der Dendriten. Solch eine Schaft-Synapse kann entstehen, wenn sich ein Dendrit und das Axon einer anderen Nervenzelle berühren. Bisher nahmen die Wissenschaftler an, dass Nervenzellen auch bei diesen hemmenden Verbindungen erst suchende Fortsätze ausschicken, um die beste Stelle für eine Schaft-Synapse zu finden. Doch diese Annahme wurde nun von Wissenschaftlern des Max-Planck-Instituts für Neurobiologie widerlegt. Bei ihren Beobachtungen entstanden hemmende Synapsen nur dort, wo bereits ein physischer Kontakt zwischen einem Dendriten und dem Axon einer anderen Nervenzelle bestand.

Festgelegt und doch anpassungsfähig

Diese Beschränkung auf bereits vorhandene Kontaktstellen könnte jedoch problematisch sein: Im Gegensatz zu den beweglichen Fortsätzen können weder die Dendriten noch das Axon einer Nervenzelle ihre Position nach vollendeter Gehirnentwicklung ändern. Somit sind die möglichen Stellen für hemmende Schaft-Synapsen im erwachsenen Gehirn auf bereits vorhandene Überkreuzungen von Dendriten und Axone begrenzt. Gibt es hier also keinen Spielraum für die sonst so wichtige Flexibilität der Nervenkontakte?

Doch das Gehirn beweist auch hier Anpassungsfähigkeit. Denn nur an ungefähr 40 Prozent der Überkreuzungen von Dendriten und Axonen gab es auch eine Synapse: "Je nach Bedarf können hemmende Synapsen an noch freien Überkreuzungen aufgebaut und auch wieder entfernt werden", erklärt Corette Wierenga ihre Beobachtungen. Schaft-Synapsen können dabei genauso schnell wie Fortsatz-Synapsen auf- und auch wieder abgebaut werden, also im Zeitraum von wenigen Minuten bis Stunden - so ein weiteres Ergebnis der Max-Planck-Forscher. So kann das Gehirn schnell reagieren, wenn es nötig wird, den Informationsfluss von einem bestimmten Dendriten zu hemmen. Als nächstes wollen die Wissenschaftler klären, inwieweit der Auf- und Abbau der hemmenden Synapsen durch die Aktivität des Gehirns beeinflusst wird.

Originalveröffentlichung:

Corette J. Wierenga, Nadine Becker, Tobias Bonhoeffer
GABAergic synapses are formed without the involvement of dendritic protrusions
Nature Neuroscience, 24. August 2008

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften