Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stopp und Go im Denkprozess

26.08.2008
Es gibt Nervenzellkontakte, die den Informationsfluss hemmen. Max-Planck-Wissenschaftler konnten nun klären, wie diese entstehen.

Die Anpassungsfähigkeit des Gehirns ist enorm: Ständig wachsen neue Informationsleitungen zwischen Nervenzellen aus und ungenutzte Verbindungen werden wieder abgebaut. So wird der Datenfluss kontinuierlich optimiert und neue Informationen und Eindrücke können verarbeitet werden. Doch das Durchdenken einer neuen Situation kann auch die zeitweilige Unterdrückung unwichtiger Informationen erfordern. Daher besitzt das Gehirn auch Nervenzellkontakte, die den Informationsfluss hemmen. Bislang war jedoch unklar, wie diese hemmenden Kontakte entstehen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben dies nun geklärt und fanden dabei erstaunliche Unterschiede zu den "herkömmlichen" Nervenzellverbindungen. (Nature Neuroscience, 24. August 2008)


Auch der Informationsfluss im Gehirn bekommt nicht nur grünes Licht. Wie hemmende Verbindungen zwischen Nervenzellen entstehen, zeigten nun Wissenschaftler des MPI für Neurobiologie. Bild: Max-Planck-Institut für Neurobiologie / Wierenga

Denken ist ein komplexer Prozess. Wie in einem riesigen Kabelnetz fließen Informationen von einer Nervenzelle zur Nächsten. Um die ständig eintreffenden neuen Informationen verarbeiten zu können, sind die Verbindungen sehr anpassungsfähig: Sobald wir etwas Neues sehen, erleben oder tun, wachsen neue Querverbindungen zwischen einzelnen Nervenzellen aus. Über diese neuen Verbindungen kann eine Information dann an die richtigen Zellen weitergegeben und somit verarbeitet werden.

Neue Datenleitungen durch flexible Fortsätze

Der Blick durchs Mikroskop zeigt, dass der Aufbau neuer Kontakte über winzige Fortsätze geschieht. Soll etwas Neues verarbeitet werden, wachsen auf den Verästelungen einer Nervenzelle, den sogenannten Dendriten, feine Fortsätze aus. Doch wie in einem Kabelknäuel reicht das reine Überkreuzen von Kabeln nicht aus, um Informationen auszutauschen. Trifft ein Fortsatz daher auf eine Nachbarzelle, die sich zur Verarbeitung der neuen Information eignet, so reift am Ende des Fortsatzes eine Synapse. Erst diese Kontaktstelle ermöglicht die Weitergabe der Informationen von einer Zelle zur nächsten. Ist die kontaktierte Zelle für den Austausch dagegen ungeeignet, zieht sich der Fortsatz wieder zurück.

Doch wie in jedem Kabelnetz käme es auch in den Nervenleitungen schnell zu Überlastungen, wenn die Datenübertragung nicht an manchen Stellen oder zu manchen Zeiten eingeschränkt würde. So gibt es neben den flexiblen Fortsatz-Kontakten, die den Datenaustausch fördern, andere Kontakte, die den Informationsfluss hemmen. Wie diese hemmenden Kontakte entstehen, war bislang jedoch völlig unklar.

Rotes Licht für den Informationsfluss

Während sich die informationsfördernden Synapsen an den Enden der auswachsenden Fortsätze befinden, sitzen hemmende Synapsen direkt auf dem "Schaft" der Dendriten. Solch eine Schaft-Synapse kann entstehen, wenn sich ein Dendrit und das Axon einer anderen Nervenzelle berühren. Bisher nahmen die Wissenschaftler an, dass Nervenzellen auch bei diesen hemmenden Verbindungen erst suchende Fortsätze ausschicken, um die beste Stelle für eine Schaft-Synapse zu finden. Doch diese Annahme wurde nun von Wissenschaftlern des Max-Planck-Instituts für Neurobiologie widerlegt. Bei ihren Beobachtungen entstanden hemmende Synapsen nur dort, wo bereits ein physischer Kontakt zwischen einem Dendriten und dem Axon einer anderen Nervenzelle bestand.

Festgelegt und doch anpassungsfähig

Diese Beschränkung auf bereits vorhandene Kontaktstellen könnte jedoch problematisch sein: Im Gegensatz zu den beweglichen Fortsätzen können weder die Dendriten noch das Axon einer Nervenzelle ihre Position nach vollendeter Gehirnentwicklung ändern. Somit sind die möglichen Stellen für hemmende Schaft-Synapsen im erwachsenen Gehirn auf bereits vorhandene Überkreuzungen von Dendriten und Axone begrenzt. Gibt es hier also keinen Spielraum für die sonst so wichtige Flexibilität der Nervenkontakte?

Doch das Gehirn beweist auch hier Anpassungsfähigkeit. Denn nur an ungefähr 40 Prozent der Überkreuzungen von Dendriten und Axonen gab es auch eine Synapse: "Je nach Bedarf können hemmende Synapsen an noch freien Überkreuzungen aufgebaut und auch wieder entfernt werden", erklärt Corette Wierenga ihre Beobachtungen. Schaft-Synapsen können dabei genauso schnell wie Fortsatz-Synapsen auf- und auch wieder abgebaut werden, also im Zeitraum von wenigen Minuten bis Stunden - so ein weiteres Ergebnis der Max-Planck-Forscher. So kann das Gehirn schnell reagieren, wenn es nötig wird, den Informationsfluss von einem bestimmten Dendriten zu hemmen. Als nächstes wollen die Wissenschaftler klären, inwieweit der Auf- und Abbau der hemmenden Synapsen durch die Aktivität des Gehirns beeinflusst wird.

Originalveröffentlichung:

Corette J. Wierenga, Nadine Becker, Tobias Bonhoeffer
GABAergic synapses are formed without the involvement of dendritic protrusions
Nature Neuroscience, 24. August 2008

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten