Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stoffwechselkrankheit: Öffner für defekte Kanäle

14.08.2014

Mutierte Ionenkanäle verursachen die seltene Stoffwechselkrankheit Mukolipidose Typ IV. LMU-Wissenschaftler entwickelten nun ein synthetisches Molekül, das den Defekt in Zellversuchen beheben kann.

Mukolipidose Typ IV ist eine seltene Stoffwechselkrankheit, die das Nervensystem beeinträchtigt; die meisten Patienten können weder sprechen noch alleine gehen. Sie kann auch zu Augenleiden wie der Netzhautdegeneration führen.

Charakteristisch für Mukolipidose Typ IV ist, dass sich große Biomoleküle und Schwermetalle in bestimmten zellulären Organellen, den Lysosomen, anreichern, weil sie dort nicht adäquat abgebaut und ausgeschieden werden können.

Die Ursache sind Mutationen in einem Gen, das für sogenannte TRPML1-Kanäle codiert. „Diese Ionenkanäle regulieren den Kationenhaushalt und den pH-Wert im Lysosom und sind für dessen korrekte Funktion essentiell“, sagt der LMU-Pharmakologe Dr. Christian Grimm, dem es mit seinem Team nun gelang, ein synthetisches Molekül zu entwickeln, das defekte TRPML1-Kanäle in Zellversuchen in bestimmten Fällen aktivieren kann.

Bisher sind etwa 20 verschiedene Mutationen des TRPML1-Gens bekannt. „ Für bestimmte Mutationen – nämlich solche, bei denen der Kanal zwar defekt, aber grundsätzlich vorhanden ist und am richtigen Ort sitzt – ist es vorstellbar, den Kanal zu reaktivieren“, sagt Grimm, „Ziel unseres Projektes war es, derartige Mutationen zu identifizieren und für die Aktivierung geeignete niedermolekulare Verbindungen zu entwickeln, sogenannte small molecules“. Dieser Ansatz, von dem die Wissenschaftler nun im Fachjournal Nature Communications berichten, ist auch medizinisch relevant, weil Mukolipidose bisher nicht behandelbar ist.

Tatsächlich fanden die Wissenschaftler drei Mutationen, die für eine Behandlung mit small molecules in Frage kommen. Zunächst untersuchte Grimm, ob die entsprechenden Kanäle durch Zugabe ihres natürlichen Bindungspartners wieder durchgängig gemacht werden können. Dabei zeigte sich aber, dass die mutierten Kanäle von ihren natürlichen Bindungspartnern nicht mehr angesteuert werden können.

„Deshalb entwickelten wir einen synthetischen Bindungspartner, das small molecule MK6-83“, erzählt Grimm. Mit diesem Molekül hatten die Wissenschaftler Erfolg: Bei zwei der drei identifizierten Mutationen konnten sowohl in Mauszellen als auch in Zellen menschlicher Mukolipidose-Patienten die defekten Kanäle mit MK6-83 erfolgreich aktiviert werden.

„Damit stellt MK6-83 einen viel versprechenden Kandidaten für neue Therapieansätze dar. Vermutlich funktioniert das synthetische Molekül besser als der natürliche Bindungspartner von TRPML1, weil es an einer anderen Stelle des TRPML1-Kanals ansetzt – nämlich viel näher an der Pore als der natürliche Bindungspartner, PI(3,5)P2“, sagt Grimm. Sein nächstes Ziel ist es nun, MK6-83 auch in transgenen Mausmodellen, die die entsprechenden TRPML1-Mutationen tragen, zu untersuchen.

Publikation:
A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV
Cheng-Chang Chen, Marco Keller, Martin Hess, Raphael Schiffmann, Nicole Urban, Annette Wolfgardt, Michael Schaefer, Franz Bracher, Martin Biel, Christian A. Wahl-Schott, and Christian Grimm
Nature Communications 2014
DOI: 10.1038/ncomms5681

Kontakt:
Dr. Christian Grimm
Pharmakologie für Naturwissenschaften
Phone: +49-(0)89-2180-77320
christian.grimm@cup.uni-muenchen.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften